
Accelerating Change | 1

www.digitalpromise.org
Digital Promise

Accelerating Innovation in Education

Computational Thinking
for a Computational World

http://www.digitalpromise.org

Computational Thinking for a Computational World | 2

Table of Contents
Abstract. 3

I. Introduction. 4

II. Technology is Changing How We Live and Work. 6

III. The Coding Movement and Computer Science for All. 10

IV. �The Current State of Computer Science
Education in K-12 Schools. 14

V. The Central Role of Computational Thinking 19

VI. �Integrating Computational Thinking
Across K-12 Curriculum . 24

VII. Recommendations. 26

VIII. Conclusion. 28

Acknowledgements. 29

Appendix A: Leading K-12 Coding Non-Profits. 30

Appendix B: Digital Promise . 39

References . 41

Computational Thinking for a Computational World | 3

Abstract

Computers, smartphones, smart systems, and other
technologies are woven into nearly every aspect of our daily
lives. As computational technology advances, it is imperative
that we educate young people and working adults to thrive in
a computational world. In this context, the essential question
for American education is: In a computational world, what is
important to know and know how to do?

This paper argues that computational thinking is both central
to computer science and widely applicable throughout
education and the workforce. It is a skillset for solving
complex problems, a way to learn topics in any discipline,
and a necessity for fully participating in a computational
world. The paper concludes with recommendations for
integrating computational thinking across K-12 curriculum.

Computational Thinking for a Computational World | 4

We see these changes all around us: we can
now instantaneously communicate with
virtually anyone in the world; search and
find information on any topic; access or
purchase any available product or service;
and create content and share it with the
world. We can also automate numerous
services and activities to improve accuracy
and efficiency at a lower cost. In addition, the
massive amounts of data we can collect and
analyze give us the ability to see the world,
and its opportunities and problems, in new
ways and on a scale never before possible.

As computational technology advances
and becomes even more deeply embedded
in our daily lives, it is imperative that
we educate young people and working
adults to thrive in a computational world.
This includes ensuring that everyone is
1) equipped to play a meaningful role in
their communities and our democracy; 2)
prepared for the changing nature of work;
and 3) motivated to pursue lifelong learning
so they are empowered to fully participate
and proactively shape their futures, and the
future of society, work, and technology.

In this context, the essential question
for American education is:

In a computational world,
what is important to know
and know how to do?

As educators and education stakeholders
explore the answer to this question, one thing
is clear: the answer is not simply memorizing
facts or learning skills that are applicable only
to specific tasks, especially when those tasks
can be done more quickly and with greater
accuracy by technology. Instead, the answer
lies in skills that reflect the demands of today’s
technology-driven world, as well as capabilities
that are uniquely human — and will remain so
for the foreseeable future.

Because computational technologies
are transforming so many dimensions of
modern work and life, we concur with
others in the education community that
computational thinking is a critical part of
what is important to know and know how to
do in a computational world. Computational
thinking is often referenced alongside
coding and computer science, but there are
important differences between the three:

•	 Coding is the practice of developing
a set of instructions that a computer
can understand and execute.

•	 Computer science is “the study of
computers and algorithmic processes,
including their principles, their hardware
and software designs, their applications,
and their impact on society.”2

•	 Computational thinking is “a way of
solving problems, designing systems,

We live in an increasingly computational world, with
computers, smartphones, smart systems, and other
technologies woven into nearly every aspect of our daily
lives. Computational technology has fundamentally changed
how we live, work, and, some would say, even think.1

I. Introduction

https://www.sciencenews.org/article/smartphones-may-be-changing-way-we-think

Computational Thinking for a Computational World | 5

and understanding human behavior
that draws on concepts fundamental to
computer science… a fundamental skill for
everyone, not just computer scientists.”3

This paper describes how computational
thinking is both central to computer science
and widely applicable to other disciplines.
It is a skillset for solving complex problems,
a way to learn topics across the curriculum,
and a necessity for fully participating in
a computational world. Because of the
importance of computational thinking and
the breadth of its relevance, it should be
taught across subject areas in K-12 schools.

Following the introduction, Part II examines
how computational technologies are
changing how we work. Part III introduces
coding and computer science education,

looking at the evolution and impact of the
modern coding and Computer Science for
All movements (circa 2013) and the role they
are playing in bringing greater awareness to
the need for computer science education in
K-12 schools. Part IV reports on the current
state of K-12 computer science education
in the United States. Part V reviews the
definition of computational thinking and
its relationship to computer science and
coding, and the remainder of the paper makes
the case for computational thinking as a
necessity in a computational world, including
recommendations for education stakeholders
on how to integrate computational
thinking across K-12 curriculum.

Computational Thinking for a Computational World | 6

II. Technology is Changing
How We Live and Work
In a report titled The Future of Jobs,4 the World Economic
Forum (WEF) noted that we are at the beginning of a “fourth
industrial revolution” that builds on the digital revolution that
began in the middle of the last century. The report described
the technological changes that are reshaping economic and
daily life, disrupting business practices and social norms.

While acknowledging that the WEF
correctly captured the significance of digital
technology’s effect on how we live and work,
some critics of the report contend that labeling
this era as the next industrial revolution is
incorrect. Jeremy Rifkin, economic and social
theorist and author of 20 books on the impact
of scientific and technological changes,
has instead described5 what is occurring
as a “maturing” of the digital revolution:
foundational and other technologies
coming together to create “a super-internet
to manage, power, and move economic
activity across society’s value chains.”

Regardless of whether we’re at the beginning
of a fourth industrial revolution or in the
middle of a maturing digital revolution,
technology is having a dramatic impact on
jobs and how we work. For example, smart
machines and systems are replacing human
labor in some repetitive and predictable jobs
such as machining, welding, painting, and
assembling parts in certain manufacturing
environments. These smart systems are also
increasingly being deployed in less predictable
jobs, such as operating a vehicle hauling raw
materials across a job site and cashiering in
a fast-food restaurant. Even some higher
skilled tasks such as assisting a customer in

opening a bank account or preparing routine
legal documents can be done more quickly
and with greater accuracy by smart systems.

At the same time, smart systems are
also being used to augment and extend
human capabilities. An analysis of 900
U.S. occupations showed that technology
is now commonly used in all but two job
categories.6 One example of human-centered
technology is the use of collaborative robots7
in warehouses. These small, mobile, relatively
inexpensive robots are designed to help
human workers perform routine tasks such as
finding items in a large or crowded warehouse
and transporting items across a warehouse
to be packed and shipped. The robots have
limited functionality, but what they do helps
human workers do their work in less time and
frees them up for higher value activities.

Another example is the use of chatbots:
programs designed to simulate how a
human would behave in conversation. One
application of chatbots is conversational
ordering: an office manager responsible for
ordering office supplies speaks directly to a
chatbot on a smartphone or other device;
the chatbot verbally confirms the order,
and then places it with a selected supplier.

http://reports.weforum.org/future-of-jobs-2016/
http://reports.weforum.org/future-of-jobs-2016/
http://www.huffingtonpost.com/jeremy-rifkin/the-2016-world-economic-f_b_8975326.html
http://www.huffingtonpost.com/jeremy-rifkin/the-2016-world-economic-f_b_8975326.html
http://www.oecd-ilibrary.org/social-issues-migration-health/structural-transformation-in-the-oecd_5jlr068802f7-en
http://www.oecd-ilibrary.org/social-issues-migration-health/structural-transformation-in-the-oecd_5jlr068802f7-en
https://www.wsj.com/articles/a-robot-can-be-a-warehouse-workers-best-friend-1501752600
http://news.stanford.edu/news/2014/november/texting-literacy-tips-111714.html
https://en.wikipedia.org/wiki/Chatbot
https://www.ibm.com/watson/services/conversation-2/

Computational Thinking for a Computational World | 7

Linked to a commerce application on the
backend, the supplier fulfills the order. With
conversational ordering, the office manager
can order supplies on the fly, without having
to stop to fill out and send online forms.

An additional example is the use of intelligent
tutoring systems to extend and enhance the
impact of expert teachers. These systems
simulate one-on-one human tutoring,
providing learning activities matched to each
student as well as feedback that identifies
the exact step of a complex problem-
solving process where the student went
astray. A teacher can use a tutoring system
to provide additional help for struggling
students or enable students who work more
quickly to move ahead at their own pace.

Computational technology is also transforming
numerous high-skill, high-wage professions
— especially those that require large amounts
of data to be processed and analyzed
quickly and synthesized into reports. These
include financial services,8 law, and medicine,
where technology brings greater speed,
accuracy, and efficiency to routine tasks
and creates more capacity for professionals
to focus on more complex activities.

Technologies driving
smart systems

In all of these examples, rapid advances
in foundational technologies are driving
the smart machines and systems that can
augment human capabilities: ever more
powerful computing and networking systems
that both speed up processing and use
less power; mobile and remote computing
and communications devices and systems
that allow people to collaborate across
geographical distances; cloud computing
for running software and services and
storing data on the internet so it can be
accessed from anywhere instead of just
locally; and machines and devices with
built-in wireless networking and sensors.

An example of how these technologies can
come together is the Internet of Things.
In simple terms, the Internet of Things is a
network of interconnected smart machines
and devices that can collect data and, when
connected to automation systems, analyze
the data and either act on their own or help
people take action. Devices that make up the
Internet of Things can be everyday items such
as fitness wearables, smart thermostats, and
refrigerators. In services and business settings,
they can be anything from networked medical
devices to environmental monitoring systems.

Take the example of smart refrigerators.
Smart refrigerators can sense when items
need to be replaced and place orders
for delivery of needed items. In addition,
refrigerators and other appliances account
for about 30 percent of home energy use.

So, if refrigerators and other appliances are
thought of “as assets on the electrical grid,”9
incorporating processing power, networking,
and memory would give them the ability to
dynamically control their energy consumption.
This could reduce utility bills for homeowners
and business owners, and enable utilities to
meet energy demands with more efficiency.

The evolution of new computing technologies
is likely to accelerate as quantum computing
moves from theory to reality. Quantum
computers work differently from classical
computers, which are essentially giant
calculators that operate based on a set of
instructions provided for them by humans.
Because classical computers can only work
on one thing at a time, the more complex
the problem, the more time it takes to
solve. Some problems are so complex they
cannot be solved by classical computers
in a practical period of time. Using a new
model of computation that harnesses the
power of atoms and molecules, quantum
computers have the potential to perform
certain calculations at speeds a million times
faster than classical computers — putting a

https://www.mckinsey.com/industries/financial-services/our-insights/cognitive-technologies-in-capital-markets
https://www.forbes.com/sites/michaelkanellos/2016/01/13/hold-the-laughter-why-the-smart-fridge-is-a-great-idea/#6442cfc57d40

Computational Thinking for a Computational World | 8

whole new class of computational problems
now considered intractable within reach.

Once out of the research lab, quantum
computing will affect a growing number of
technologies that are capable of functions
considered more directly and individually
“human,” and that can replace or augment
work activities traditionally done by people.
Areas that may see the most significant
effects include artificial intelligence,
machine learning, and robotics.

Artificial intelligence is the ability of a device
or software to perform tasks that previously
required human intelligence. Examples
include visual perception, speech recognition,
decision-making, and language translation.

Machine learning is an area of artificial
intelligence that enables computers to
“learn” without explicitly being programmed,
similar to the way humans do: by interpreting
data and patterns, and self-adjusting based
on successes and failures. For example,
by analyzing the patterns of a person’s
choices of music or movies, a smart virtual
personal assistant can recommend new
options that match their interests based on
trends among people with similar profiles.

When embedded in the Internet of Things,
artificial intelligence and machine learning can
be used, for example, to provide drivers with
navigation advice or schedule
distributed energy resources such as solar
and wind power, based on current usage.

Robotics combines mechanical engineering,
electrical engineering, and computer
science in the design of mechanical systems
that can perform tasks and interact with
their environment. Sometimes robots
can act autonomously, without involving
humans; other automated tasks require
that robots interact with humans.

The uses of artificial intelligence, machine
learning, and robotics are vast, and include:

•	 Intelligent agents that combine speech
recognition, knowledge of and the ability to
interact with users in varied ways, including
natural and conversational language,
with connections to data sources and
web or mobile apps. These capabilities
combine to enable them to perform useful
tasks, such as those in the conversational
ordering application described earlier.

•	 Intelligent systems that can find
patterns in large volumes of all types
of data to find answers to questions or
draw informed conclusions, and even
“learn” complex problem-strategies.
Examples of such systems are IBM’s
Watson10 and DeepMind’s AlphaGo.11

•	 Autonomous or self-driving vehicles that
are equipped with technology capable of
sensing environmental information that
allows them to perform safely without
a human operator. Examples of such
vehicles currently in use include driverless
trucks hauling materials across a job site
and self-driving tractors and combines
in agriculture. Already, some passenger
cars can operate mostly without human
intervention, matching driving speeds
to surrounding traffic, keeping within a
lane or automatically changing lanes,

https://www.ibm.com/watson/
https://www.ibm.com/watson/
https://deepmind.com/research/alphago/

Computational Thinking for a Computational World | 9

self-parking, and being summoned
from a parked position. Someday, we
can imagine that public roads will be
populated with millions of driverless
trucks, taxis, and passenger cars.

•	 Robots and robotic systems that can sense
and take action in the physical world, either
self-guided or guided by a human operator.
One example is the use of a robot diver12
that can dive to environments and depths
that are too dangerous or beyond the
physical limits of human divers. The human
operator remains on land or a ship while
visual and haptic feedback systems let the
operator “see” everything the robot sees
and “feel” everything the robot touches.
The robot can gather materials and use
tools, which makes it valuable for salvage
operations or underwater construction.

The implications of these technologies, which
can replace, extend, or augment human
capabilities, are profound: they affect the
workplace and society at large.
For example, consider how the language that is
commonly used to describe these technologies
— smart devices, machine learning, artificial
intelligence — blurs the boundary between
human and nonhuman characteristics. With
these implications in mind, we return to the
essential question posed by this paper: in a
computational world, what is essential for
people to know and know how to do?

This essential question has breathed
new life into efforts that have been
underway for decades to bring
computing into K-12 education.

http://cs.stanford.edu/group/manips/ocean-one.html
http://cs.stanford.edu/group/manips/ocean-one.html

Computational Thinking for a Computational World | 10

III. The Coding Movement and
Computer Science for All

In recent years, leaders from all walks of American life have
joined a movement that advocates for every student to learn
how to code.13 Parents are on board: a 2015 Google/Gallup
poll found that 9 out of 10 U.S. parents want their kids to
learn how to code at school, with parents in lower income
groups placing an even higher value on learning coding than
those with higher incomes.14

As a result of this widespread enthusiasm,
millions of dollars of private and public
funds have been contributed to coding
programs in our K-12 schools as well as to
organizations in the movement that design
and deliver programs (see Appendix A: Leading
K-12 Coding Non-Profits). With this level of
attention and investment, it is worth asking:
what is the value of teaching children to code?

Coding for kids is
not a new idea

The idea of helping children to learn
computation is not new. Seymour Papert,
mathematician, computer scientist, educator,
and lifelong advocate for equity and inclusion,
argued as early as 1968 that computing could
be a vehicle for learning. With colleagues,
he developed a theory of learning called
“constructionism” (building on Jean Piaget’s
theory of constructivism), which posited
that people learn most effectively when they
are actively engaged in constructing things

in the world. Papert argued that learning
how to program computers could provide a
meaningful context for children to learn how
to think about themselves, their learning,
ideas, and experiences. He also argued
that computers could be powerful tools to
help children make sense of the world.

In 1967, Papert, who co-founded the MIT
Artificial Intelligence Lab with Marvin
Minsky, partnered with Wally Feurzig,
Cynthia Solomon, and others to develop a
programming language for children that would
enable them to explore powerful ideas in a
variety of domains and engage intellectually in
challenging content. They called the language
“Logo.” The most widely recognized feature
of Logo was the use of a robotic turtle that sat
on the floor; children could move it by writing
Logo programs on an attached teletype. The
Logo team later designed an on-screen version
of the turtle that could be used to draw shapes,
designs, and pictures, and create animations
and games on a computer screen.

http://el.media.mit.edu/logo-foundation/what_is_logo/index.html
http://el.media.mit.edu/logo-foundation/what_is_logo/index.html

Computational Thinking for a Computational World | 11

The ability to program a turtle to move about
in space provided a context for mathematical
ideas to have obvious power and utility.
Logo also helped make mathematical
abstractions concrete by providing immediate
feedback — not by telling students they were
right or wrong, but by inspiring students
to “debug” (identify and correct errors)
problems they observed in the mathematics
expressed in their own programs.

In 1971, Papert and Solomon wrote a paper,
“Twenty Things to Do with a Computer,”15
that provided examples of how computers
could be used to take action, not just
solve mathematical problems. The paper
could be considered a blueprint for
today’s maker movement in education.

In the late 1970s, with the advent of personal
computers, Logo emerged from MIT and a
handful of other research labs and began
to make its way into K-12 classrooms. The
language gained momentum in the 1980s
with the publication of Papert’s book,
Mindstorms: Children, Computers, and
Powerful Ideas.16 The book provided examples
of how Logo could be used to engage students
in their own learning, which sparked teacher
interest in bringing Logo into their classrooms.

In the mid-1980s, while at the MIT Media lab,
Mitchel Resnick and Steve Ocko developed
a system that interfaced Logo with motors,
lights, and sensors built into machines

made of LEGO bricks. The collaboration
led to a popular line of educational and
consumer kits that enabled students to build
customizable, programmable robots. Called
LEGO MINDSTORMS after Papert’s book, the
kits have inspired millions of young learners all
over the world to learn programming and build
robots. In addition, throughout the 1980s,
dozens of books were published on how to
teach Logo programming, conferences were
convened, and research was conducted.

A new visual programming language
inspired by Logo, Scratch,17 was developed
in 2004 as a project of Resnick’s Lifelong
Kindergarten Group18 at the MIT Media Lab.
Designed to help students “think creatively,
reason logically, and work collaboratively,”
Scratch is provided free of charge to schools,
educators, and parents, and has been used
by millions of students to create and share
interactive media. Users have shared nearly
25 million Scratch projects in an online
creative learning community hosted by MIT.

Despite the popularity of Scratch and other
tools, and the decades that have passed
since Papert began his work, the vision of
all students programming computers in
order to learn about the world has not come
to fruition. Nevertheless, it is important
to frame today’s efforts in the context of
this historical lineage so that researchers
and practitioners can learn important
lessons from past successes and failures.

http://www.stager.org/articles/twentythings.pdf
https://www.media.mit.edu/people/mres/overview/
https://www.media.mit.edu/people/mres/overview/
https://education.lego.com/en-us
https://education.lego.com/en-us
https://scratch.mit.edu
https://www.media.mit.edu/groups/lifelong-kindergarten/overview/
https://www.media.mit.edu/groups/lifelong-kindergarten/overview/

Computational Thinking for a Computational World | 12

Coding catches on

The modern coding movement ignited19 in
2013, when the nonprofit Code.org introduced
its Hour of Code,20 a one-hour introduction
to computer science for K-12 students.
The work of other longtime proponents of
teaching K-12 students to code — including
the Association for Computing Machinery
(ACM), the Computer Science Teachers
Associations (CSTA), the International
Society of Technology in Education (ISTE),
and the National Science Foundation
(NSF) — had not previously garnered such
widespread popular support. With effective
marketing, a simple point of access, and
a narrative that emphasized workforce
development, Hour of Code triggered a social
movement that engaged a broad group of
stakeholders: computer science educators and
researchers, education leaders, curriculum
developers, classroom teachers, nonprofits,
policymakers at both the federal and state
levels, and employers across industries.

A compelling argument in support of
everyone learning how to code was that job
opportunities for programmers in the United
States had expanded beyond technology into
all industries. A 2015 report from Burning
Glass21 confirmed this idea, finding that half
of job openings for programmers were in
industries outside of technology, most notably
in finance, manufacturing, and healthcare.

Another argument for learning to code was
that in a world economy increasingly defined
by computational technology, coding skills
will be essential to many jobs in the future,
and not just for programmers. The Burning
Glass survey found that in 2015, 7 million
U.S. jobs representing 20 percent of “career
track” jobs were in occupations that value
coding skills. These included Information
Technology (IT) workers, data analysts, artists
and designers, engineers, and scientists.

To many in the education community, the
movement’s focus on workforce development
was troubling because it could be interpreted
to mean that the main purpose of education
is to help students get a job. While career
readiness is a legitimate expectation of
education, so is preparing citizens to participate
in our democracy, increasing social cohesion
by creating common experiences, and, in the
words of John Dewey, “to nurture individuals
to discover their full power and potential” and
use what they’ve learned for the greater good.22

Another concern of educators — which had
been shared by organizations championing
expanding access to computer science
in previous decades — was that the main
beneficiaries of the new movement
seemed to mirror the current profile of
the professional programmer: white,
middle- and upper-class, mostly male.
However, in a blog post23 in the Washington
Post in 2016, education researchers Jane
Margolis and Yasmin Kafai offered the view
that the movement had the potential to
increase the participation of people who
have historically been underrepresented in
computer science and other STEM fields.
They wrote, “Computer science can help
interrupt the cycle of inequality that has
determined who has access to this type of
high-status knowledge in our schools.”

http://www.techrepublic.com/article/how-hour-of-code-sparked-a-movement-that-could-teach-100-million-people-to-code/
http://www.techrepublic.com/article/how-hour-of-code-sparked-a-movement-that-could-teach-100-million-people-to-code/
https://code.org/
https://hourofcode.com/us
https://hourofcode.com/us
https://www.washingtonpost.com/news/answer-sheet/wp/2014/10/17/why-the-coding-for-all-movement-is-more-than-a-boutique-reform/?utm_term=.ec7d571d87f8
https://www.washingtonpost.com/news/answer-sheet/wp/2014/05/29/all-students-should-learn-to-code-right-not-so-fast/?utm_term=.2d11701dc876
https://www.washingtonpost.com/news/answer-sheet/wp/2014/10/17/why-the-coding-for-all-movement-is-more-than-a-boutique-reform/?utm_term=.7f8541e10ff8

Computational Thinking for a Computational World | 13

Also building on the efforts of organizations
that had been working to expand access in
previous decades, Margolis and Kafai painted a
broader vision for the value of knowing more
than just how to program or use computers:
“Being a digital native today isn’t just about
browsing the web, using technology to
communicate, or participating in gaming
networks. It really involves knowing how
things are made, breaking down and solving
problems, designing systems, contributing
through making, and understanding social and
ethical ramifications. We see how computers
in any form and place have become an
inextricable part of our social lives—not just
how we interact but also how we contribute.”

Despite the emphasis on “coding,” as reflected
in the names of many of the organizations
comprising the popular movement, most
also emphasized and advocated for the
broader academic discipline of computer

science. However, even though the terms
“coding” and “computer science” are
sometimes used interchangeably, they are
not synonymous. Coding involves writing a
set of instructions a computer can execute.
Computer science is the study of computers
and how computation can be organized
and analyzed, including social and ethical
questions that surround the use of computers.

Equally important, the movement put equity
front and center as a guiding principle. For
example, Code.org describes its mission24
as “expanding access to computer science”
and “increasing participation by women and
underrepresented minorities.” Nonprofits such
as Black Girls Code,25 Girls Who Code,26 and
CodeNow27 were founded specifically to help
students who have not traditionally had access
to these kinds of learning opportunities.

https://code.org/about
https://code.org/about
http://www.blackgirlscode.com/
http://www.blackgirlscode.com/
https://girlswhocode.com/
https://www.codenow.org/
https://www.codenow.org/

Computational Thinking for a Computational World | 14

IV. The Current State of Computer
Science Education in K-12 Schools
Because education in America is highly decentralized, there
is no single authority at the national level guiding the purpose
and implementation of opportunities to learn about computing.
This means that even if access to opportunities to learn were
expanded to every student in the country, the goals and
implementation models for computer science curriculum could
vary across states and districts, meaning that not all students
would have the same learning experiences or outcomes.

Amid this diversity, there are common
motivations emerging for K-12 districts
and schools offering computer
science education. Here are four:

1. Developing job skills. K-12 education
leaders recognize that there is a gap between
graduating students’ skills and employers’
needs and values. Next Generation Science
Standards,28 for example, are designed to
address what the “modern day scientist”
is actually doing, and help build relevant
skills and competencies early. More than
40 states have shown interest in the
standards and 18 states plus the District of
Columbia have adopted them, representing
35 percent of the nation’s students.

Computer science skills are increasingly
needed in a broad range of professional
settings, even in non-technology fields.21
This skills gap is likely to worsen with the
technological changes described earlier in
this paper, which will dramatically alter the
nature of employment and skills in demand.29

2. Shifting pedagogical practices. Some
educators and leaders promoting computer

science classes see computer science as an
opportunity to deepen learning by employing
the principles of constructionism,30 which
is Papert’s theory of learning-by-making
described earlier in this paper. Advocates
of constructionism have long supported
the idea of students using computers and
programming languages to learn by creating
digital artifacts, including applications, digitally
controlled physical objects, and digital
stories that are told on many platforms and
across multiple media. Consequently, some
educators see computing education as the
best opportunity to apply constructionist
principles to curriculum and pedagogy.

3. Advancing a broader set of higher order
skills. Schools and districts are deeply
engaged in moving beyond traditional content
knowledge to build a broader range of higher
order skills, including creativity, collaboration,
critical thinking, and communication.
Notably, new standards such as the Common

Core State Standards31 and Next Generation
Science Standards integrate computational
skills in activities such as analyzing data,
creating simulations, and modeling. Even
though state adoption of these standards

https://en.wikipedia.org/wiki/Next_Generation_Science_Standards
https://www.nextgenscience.org/
https://www.nextgenscience.org/
http://www.corestandards.org/
http://www.corestandards.org/

Computational Thinking for a Computational World | 15

is not universal and implementation varies,
the standards influence many state policy
discussions. Schools see computer science
as an opportunity to build higher order skills
while targeting some of these standards.

4. Broadening participation in computer
science education and careers. Even
though the participation of women in
computer science has seen gains in recent
years, it remains disproportionately low.
For example, even though women received
55 percent of U.S. bachelor’s degrees
granted in 2015,32 women accounted for
just 16 percent of the computer science

bachelor’s degrees reported.33 The statistics
on underrepresented minorities tell a similar
story: in 2015, underrepresented minorities
accounted for just 11 percent of computer
science bachelor’s degrees reported.33

As with all achievement gaps, the diversity
gap begins with socioeconomic disparities:
children do not come to school with equal
advantages. It is difficult for schools to change
achievement gaps, and thus it should be no
surprise that the diversity gap in computer
science in college and careers continues
throughout K-12 schools. Although it may
be tempting to blame this on the schools

Instructional approaches can embrace one or more of these motivations
for teaching computer science. Consider how the following classroom
learning activities can help to develop job skills, shift pedagogical
practices, advance higher order core competencies, and create a more
relevant and inclusive learning environment for students:

•	 Creating websites and mobile apps for authentic users, including:
-- Advocacy campaigns for social causes
-- Websites for local small businesses and nonprofits

•	 Programming computer games, such as:
-- Educational games for younger students
-- Interactive stories about social issues

•	 Exploring newly available technologies used in industry, such as:
-- Virtual reality and augmented reality
-- Parametric 3D modeling and digital fabrication

•	 Analyzing and communicating with data, including:
-- Visualizing the nutritional values of foods in the school cafeteria
-- Analyzing the performance of favorite athletes and teams

•	 Creating computational models to simulate and study complex systems, such as:
-- Investigating the potential impact of seismic activity on a neighborhood
-- Visualizing and reconfiguring local traffic patterns

•	 Tackling real-world challenges, such as:
-- Collecting and analyzing local weather and climate data and making

recommendations for local action to combat climate change
-- Developing potential solutions to the United Nations Sustainable Development Goals

https://nscresearchcenter.org/undergraduatedegreeearners-2014-15/
https://nscresearchcenter.org/undergraduatedegreeearners-2014-15/
https://cra.org/data/generation-cs/diversity/
https://cra.org/data/generation-cs/diversity/
https://cra.org/data/generation-cs/diversity/
https://cra.org/data/generation-cs/diversity/

Computational Thinking for a Computational World | 16

themselves, it is also quite difficult for schools
to assemble qualified instructors for a new
course, especially with a red hot job market
for the same skills in industry. Not surprisingly,
schools in poor neighborhoods have an even
harder time finding highly qualified instructors
and offering courses. A 2016 report34 exploring
the gap in secondary schools found that
underrepresented groups face both structural
and social barriers that create disparities
in learning opportunities. For example:

•	 Black students are less likely than white
students to have computer science
classes in the schools they attend: 47
percent versus 58 percent, respectively.

•	 Black and Hispanic students are less
likely than white students to use a
computer at home: 58 percent, 50
percent, and 68 percent, respectively.

•	 Male students are more likely than female
students to be told by a parent or teacher
that they would be good at computer
science: 46 percent versus 27 percent
being told by a parent; 39 percent versus
26 percent being told by a teacher.

The demographics of U.S. high school students
taking Advanced Placement exams offers
another barometer of diversity in various
fields of study. In 2016, more than 50,000
U.S. high school students took the Advanced
Placement (AP) Computer Science Level A
exam — more than double the number in 2012,

a 17.3 percent increase over the previous year,
and a new record.35 However, the gender and
racial makeup of the students who took the
exam is very different from the demographics
of the total student population. For example,
in 2016, girls made up just 23 percent of the
students who took the exam nationally, and
underrepresented minorities just 16 percent.

In the 2016–2017 school year, the College
Board introduced a new computer science
exam, AP Computer Science Principles. Data

on the administration of the first test36 show
that more than 29,000 female students took
the exam, bringing the percentage of girls
taking one of the AP computer science exams
to 27 percent. Results for underrepresented
minorities showed similar gains, showing
that schools are making progress on these
challenging issues. In the spring of 2017, more
than 22,000 underrepresented minorities took
the AP Computer Science Principles exam,
bringing their percentage participation in
one of the AP computer science exams to 20
percent. While this is progress, participation
rates for female students and underrepresented
minorities is far from representative.

In addition to issues of equity and educational
opportunity, there are at least three economic
reasons why everyone should act to ensure
gender and racial diversity in computer science
and STEM education and careers more broadly.
First, STEM careers tend to pay well, and
women and underrepresented minorities who
enter STEM fields or get jobs that require STEM
skills will have more earning power than they
would have otherwise. Second, research shows
that when women prosper, their families and
the communities in which they live benefit37
through more economic opportunity and
growth. Third, there is growing recognition
that diversity is essential to excellence38
in many areas of endeavor, from problem
solving to product development. As Karen
Phillips described in Scientific American,
“This is how diversity works: by promoting
hard work and creativity; by encouraging the

Diverse challenges need
diverse teams to address
them — anything less holds
everyone back.

https://blog.ed.gov/2015/12/as-computer-science-education-week-cs-ed-week-approaches-calling-all-cs-learning-champions/
https://docs.google.com/spreadsheets/d/17wvXkEq95bRfsY6Sx-IIk8XxKPk8cutho6c7JyJP1UM/edit#gid=0
https://docs.google.com/spreadsheets/d/17wvXkEq95bRfsY6Sx-IIk8XxKPk8cutho6c7JyJP1UM/edit#gid=0
http://www.unisdr.org/files/42882_42882womensleadershipinriskresilien.pdf
http://www.unisdr.org/files/42882_42882womensleadershipinriskresilien.pdf
https://www.scientificamerican.com/article/how-diversity-makes-us-smarter/
https://www.scientificamerican.com/article/how-diversity-makes-us-smarter/

Computational Thinking for a Computational World | 17

consideration of alternatives even before any
interpersonal interaction takes place.” Diverse
challenges need diverse teams to address
them — anything less holds everyone back.

Computer science education
policies vary from state to state
Given the decentralized nature of the U.S.
education system, it is not surprising that
computer science education policies vary
in states across the country. Code.org
recommends that states pursue nine policy
ideas to embed computer science in K-12
education.39 These recommended policy ideas
cover crucial areas such as funding, standards,
certification pathways for teachers, graduation
credit, and implementation guidelines.

States adopt different policies on their
own timelines, making the policy narrative
for computer science education in the
United States complex and constantly
shifting. A brief summary of state policies
as of August 201740,41 is as follows:

•	 Ten states have adopted computer
science education standards.

•	 Twenty-nine states have adopted
certification pathways for teachers
to teach computer science.

•	 Two states have ratified statewide plans
for computer science education.

•	 Thirty-five states allow computer science
to count as a mathematics or science credit
for the purposes of high school graduation.

•	 Some schools are integrating computer
science into existing career and
technical education (CTE) programs,
expanding the reach of computer science
beyond the academic program.

Progress is being made
Since their original publication in 2004, the
CSTA K-12 Computer Science Standards42
have been in use by states developing
curriculum standards for computer science.

In 2016, the ACM, the Computer Science
Teachers Association, Code.org, and more
than 100 experts from the computing and
education communities published a K-12
Computer Science Framework,43 offering
conceptual guidelines for computer
science education more broadly.

In terms of tools and resources, the CSforAll

Consortium44 is a popular resource hub
for programs and teachers in classrooms
across the country. Inspired by President
Obama’s45 Computer Science for All initiative
launched in 2016, the CSforAll Consortium
is led by a team at CSNYC,46 an organization
committed to computer science for all New
York City students, and with initial funding
from the National Science Foundation.
Today, the Consortium brings together more
than 300 researchers, content providers,
education associations, and funders to help
K-12 schools deliver inclusive, rigorous, and
sustainable computer science education.

At the high school level, the Computer
Science Advanced Placement exams are
more widely taught and standardized than
any other computer science education
course. Still, Advanced Placement courses
are not universally taught in high schools
and, when they are, students are most often
required to have a high level of achievement
to enroll in them. This limits their potential
to expand opportunities to all students.

In September 2017, President Trump called
on the U.S. Department of Education
to direct $200 million a year to STEM
fields, including computer science.

Looking at the computer science education
field as a whole, there is a clear priority among
advocates to increase adoption of computer
science in schools and reach more students.
By this measure, the movement has made
progress: in 2016, 40 percent of secondary
schools offered at least one computer science
class, up from 25 percent the year before.47

https://www.csteachers.org/page/standards
http://www.csteachers.org/
https://code.org/
https://k12cs.org/
https://k12cs.org/
https://k12cs.org/
http://www.csforall.org/
http://www.csforall.org/
https://obamawhitehouse.archives.gov/blog/2016/01/30/computer-science-all
https://obamawhitehouse.archives.gov/blog/2016/01/30/computer-science-all
https://obamawhitehouse.archives.gov/blog/2016/01/30/computer-science-all
https://csnyc.org/
https://csnyc.org/
https://www.whitehouse.gov/the-press-office/2017/09/25/memorandum-secretary-education
https://www.whitehouse.gov/the-press-office/2017/09/25/memorandum-secretary-education

Computational Thinking for a Computational World | 18

In addition, some of the country’s largest
school districts, including New York City,
Los Angeles, Chicago, and San Francisco,
have committed to making computer
science education available to all students.

Barriers to success remain

Adoption of computer science in education
has been growing rapidly, if unevenly, yet
barriers to success remain. Here are three:

1. A severe shortage of classroom teachers
with the skills necessary to teach computer
science. One of the most critical pieces of
computer science education policy is training
for pre- and in-service teachers. In all the
states with teaching certifications in computer
science, only 75 college graduates received
certification in 2016.48 Pre-service training is
not yet producing enough teachers certified to
teach computer science to address even a tiny
fraction of the demand. Rather than waiting for
the pipeline of certified pre-service teachers
to grow, experts suggest that states pursue a
phased strategy to equip in-service teachers to
teach the subject. By integrating professional
development for primary school teachers and
offering “endorsements” for qualified secondary
school teachers, states can more quickly spread
computer science learning opportunities.

2. A lack of bandwidth or knowledge to look
ahead to how computer science education
should evolve. When we asked leaders in
the computer science education movement
how they think computer science education
should evolve, the answer was that schools
are so focused on increasing participation in
computer science now that they have little
time to think about how computer science
might evolve in the future and what that
might mean for their initiatives. Nevertheless,
K-12 districts and schools must focus on
continuous improvement and iteration in
computer science initiatives to better serve an
increasingly diverse student population and
adapt to a changing world. If the access and

participation goals of the Computer Science
for All movement are to be met, it will be
necessary to change how it is taught based on
research about what works, what does not,
and for whom. Given the limited capacity of
K-12 schools to do this on their own, advances
are more likely through partnerships among
K-12 educators, education researchers,
and computer science professionals.

3. Equitable participation continues to be
a challenge. The persistent lack of diversity
in computer science courses leads some
to question whether expanding computer
science education in its current form will
lead to the greater participation we seek.
One action advocated by some is to make a
computer science course a requirement for
high school graduation. This would require
that all students have access and that girls and
underrepresented minorities in computing and
other STEM fields have the same opportunity
to learn and master the skills. An alternative
would be to allow computer science courses
to count toward high school graduation
requirements in math or science. This action
would likely serve to expand opportunities
for all students, not just for those who have
space in their schedules for elective courses.
For maximum impact with any of these
approaches, inclusive pedagogies need to
be developed and broadly implemented
in computer science courses to further
encourage diverse and equitable participation.

Inclusive pedagogies need
to be developed and broadly
implemented in computer
science courses to further
encourage diverse and
equitable participation.

Computational Thinking for a Computational World | 19

V. The Central Role of
Computational Thinking
Computational thinking is recognized as core to computer
science, and its relevance for learning extends beyond that
academic discipline.

The K-12 Computer Science Framework
referenced in the previous section of this
paper identifies seven core practices49
of computer science. They are:

1.	 Fostering an inclusive computing culture
2.	 Collaborating around computing
3.	 Recognizing and defining

computational problems
4.	 Developing and using abstractions
5.	 Creating computational artifacts
6.	 Testing and refining computational artifacts
7.	 Communicating about computing

The framework places computational
thinking at the heart of the seven core
practices, identifying practices 3 through 6
as components of computational thinking
and practices 1, 2 and 7 as complementary.

The relationship between programming/
coding, computer science, and computational
thinking makes sense: for computers to help
people solve problems, they must be given
instructions about what to do in a language
they can understand. The skill required to
tell a computer what to do is programming.

PRACTICESPRACTICES

Fostering an
inclusive

computing culture

11

Collaborating
around computing

22

Communicating
about computing

77

Recognizing
and defining

computational
problems

33

Developing and
using abstractions

44

Creating
computational

artifacts

55

Testing
and refining

computational
artifacts

66

From Navigating the Practices
in The K–12 Computer
Science Framework

https://k12cs.org/navigating-the-practices/
https://k12cs.org/navigating-the-practices/

Computational Thinking for a Computational World | 20

The thought process behind programming is
computational thinking. Both computational
thinking and programming are necessary
in the study of computer science.

However, determining the purpose, structure,
and desired outcomes of an application
is often more demanding than the actual
coding. When viewed this way, computational
thinking both enables and transcends
programming—a view introduced by Jeanette
Wing in her seminal article, “Computational
Thinking,” published in the March 2006 issue
of the Communications of the ACM.3 Wing
defined computational thinking as “a way of
solving problems, designing systems, and
understanding human behavior that draws on
concepts fundamental to computer science.”

Wing’s statement opens the door to
computational thinking as useful in many
fields — an idea Wing explicitly proposed
when she wrote, “Computational thinking
is a fundamental skill for everyone,
not just for computer scientists.”

In this broader context, computational
thinking skills include:

•	 Gathering and organizing data to investigate
questions and communicate findings

•	 Expressing procedures as algorithms (that
is, a series of logical, precise, repeatable

steps that delivers an expected result) to
reliably create and analyze processes

•	 Creating computational models
that use data and algorithms to
simulate complex systems

•	 Using and comparing computational models
to develop new insights about a subject

These practices of computational thinking
benefit both cutting-edge research and
everyday life. For example, when a hurricane
is approaching, a meteorologist on TV may
use a computational model to demonstrate
the various paths that the storm may take
as any number of interdependent variables
change. An astrophysicist may similarly
use computational thinking practices to
develop simulations and new theories
about the collisions of black holes.

Any number of problems can be reframed
and partially or wholly solved through
computational solutions. Examples include
optimizing workflow in a restaurant kitchen
to provide timely service and order accuracy;
increasing the speed and accuracy of
processing a loan application; reducing call
wait times in a customer service center; easing
traffic bottlenecks in a busy metropolitan
area; predicting the spread of a disease in
a geographic area; and even figuring out
how to build floating piers50 spanning a
lake that could allow more than a million
visitors to view the landscape from never-
before-available vantage points (as artists
Christo and Jeanne-Claude did in 2016).

Although some of these scenarios may be
more familiar than others, the underlying
practices of computational thinking are
the same. When faced with a problem,
a computational thinker reframes the
problem so it can be represented by a
model of data and algorithms. Not satisfied
with just any solution, a computational
thinker considers and tests many possible
computational models before selecting one to
implement — or decides there is no effective

The skill required to tell
a computer what to
do is programming.
The thought process
behind programming is
computational thinking.

https://en.wikipedia.org/wiki/Jeannette_Wing
http://christojeanneclaude.net/projects/the-floating-piers
http://christojeanneclaude.net/projects/the-floating-piers

Computational Thinking for a Computational World | 2121

computational solution to the problem. Since
computational models are representational,
a computational thinker critically analyzes
which representation yields the most clear,
efficient, and accurate approach, and
questions whether there are other ways to
understand the problem or improve the model.

It is important to note, however, that certain
kinds of problems cannot be solved through
computational solutions, and likewise that
computational thinking is not the only
approach to understanding and solving
problems. A 2017 article51 in American Scientist
noted that computational solutions are by
themselves inadequate for problems that
require social cooperation to resolve. Issues
known as “wicked problems,” moreover, have
no clear problem framing because of different
social interpretations of the causes, and may
have interdependencies such that any solution
could cause or worsen other problems.
For example, there are many possible ways
to explain the sources of poverty, and any
proposed solution has the potential to cause
unforeseen consequences in the short
and long term. For socially-embedded and
wicked problems like these, computational
thinking is only one of a number of strategies
that could be employed to define the
problem and develop possible solutions.

When defining what computational thinking
is, it is also helpful to establish what it is not:
that is, humans thinking like a computer. In
fact, it is just the opposite. Computational
thinking is a uniquely human ability.

As Wing noted, “Computational methods and
models give us the courage to solve problems
and design systems that no one of us would
be capable of tackling alone. Computational
thinking confronts the riddle of machine
intelligence: What can humans do better
than computers? What can computers do
better than humans? Most fundamentally, it
addresses the question: What is computable?”3

In his 2007 article, “Computational Thinking
is Pervasive,” published in the Journal
of Scientific and Practical Computing,
Alan Bundy corroborated Wing’s view of
computational thinking as broadly applicable,
noting that computational thinking was
“influencing research in nearly all disciplines,
including sciences and humanities.” Bundy
also asserted that at a more fundamental
level it was changing how we think:
“Computational concepts provide a new
language for describing hypotheses and
theories. Computers provide an extension
to our cognitive faculties. If you want to
understand the 21st century then you
must first understand computation.”52

Viewed this way, computational thinking
can be characterized in much the same way
computer programming was by Papert 50
years ago: that is, computational thinking
is both a skill to learn and a way to learn —
to create, discover, and make sense of the
world, often with computers as extensions
and reflections of our minds. Consider a few
examples that span different domains:

•	 Using computational models and
simulations, we can better understand
large, complex systems with many
interrelated parts. Examples of questions

When defining what
computational thinking is, it
is also helpful to establish
what it is not: that is, humans
thinking like a computer. In
fact, it is just the opposite.
Computational thinking is a
uniquely human ability.

https://www.americanscientist.org/article/computational-thinking-in-science
https://www.americanscientist.org/article/computational-thinking-in-science

Computational Thinking for a Computational World | 22

that can be answered include: how does
a market influence the prices of the
goods that comprise it? What happens
to an ecosystem when one species
is removed? Are there ways to better
predict the effects of climate change?

•	 By creating algorithms, we learn to
develop processes with logical, precise,
repeatable steps. For example, how
might we document and compare the
effectiveness of different strategies for
solving the same problem? What might
students learn about managing complexity
by formalizing routines into algorithms?

•	 Learning how to work with data supports
inquiry into many types of phenomena.
For example, what can parish records
of births, marriages, and deaths from
the 1500s tell us about early modern
English history? What might a political
science class learn by examining the
patterns that emerge when juxtaposing
data on droughts and drone strikes?

How it all fits together
Given how ubiquitous computing is in our
daily lives, there is a push in the education
community and beyond to declare particular
skills or competencies associated with
computation a “literacy.” What differentiates a
skill from a literacy is that a skill is specialized
(a specific thing an individual knows or knows
how to do), while a literacy is generalizable
(enabling an individual to form coherent
interpretations in any situation and act
effectively). Framed this way, reading and
writing are skills; textual literacy53 occurs
when an individual uses reading and writing
effectively for personal and social purposes.

In our increasingly computational world,
a number of skills related to computers
have been promoted as new literacies,
including ICT (information, communications
and technology) literacy, digital literacy,
media literacy, information literacy,
computational participation,54 and

computational literacy,55 to name a few. The
nuances that distinguish these terms can
be subtle, and they are an ongoing topic of
discussion among education researchers.

In her article,56 “Understanding Computer
Programming as a Literacy,” published in
Literacy in Composition Studies in 2013, and
in a subsequent book, Coding Literacy: How
Computer Programming is Changing Writing,57
Annette Yee explores the idea of programming
as a literacy. However, when it comes to
labels, Yee substitutes the broader term
“computational literacy” for programming,
because “it helps us better understand the
social, technical, and cultural dynamics
of programming… [and] also enriches our
vision of 21st century composition.”

Education researchers Shuchi Grover
and Roy Pea concluded in their article,58
“Computational Thinking in K-12: A Review
of the State of the Field,” published in 2013 in
Educational Researcher, that while the terms
computational literacy and computational
thinking are often used interchangeably,
the term computational thinking seems
preferred in research and practice.

In the end, it is not the purpose of this paper
to define and discuss all of these terms.

Computational thinking is
both a skill to learn and a
way to learn — to create,
discover, and make sense
of the world, often with
computers as extensions
and reflections of our minds.

http://www.cambridgeassessment.org.uk/Images/130433-what-is-literacy-an-investigation-into-definitions-of-english-as-a-subject-and-the-relationship-between-english-literacy-and-being-literate-.pdf
http://www.cambridgeassessment.org.uk/Images/130433-what-is-literacy-an-investigation-into-definitions-of-english-as-a-subject-and-the-relationship-between-english-literacy-and-being-literate-.pdf
http://www.p21.org/about-us/p21-framework/350
http://licsjournal.org/OJS/index.php/LiCS/article/view/24
http://licsjournal.org/OJS/index.php/LiCS/article/view/24
https://www.amazon.com/Coding-Literacy-Computer-Programming-Changing/dp/026203624X
http://people.cs.vt.edu/~kafura/CS6604/Papers/CT-K12-Review-State-Of-Field.pdf
http://people.cs.vt.edu/~kafura/CS6604/Papers/CT-K12-Review-State-Of-Field.pdf

Computational Thinking for a Computational World | 23

Instead we can review the definitions that
have been presented in this paper and how
they relate to one another. To summarize:

•	 Coding is the practice of developing
a set of instructions that a computer
can understand and execute.

•	 Computer science is “the study of
computers and algorithmic processes,
including their principles, their hardware
and software designs, their applications,
and their impact on society.”2

•	 Computational thinking is “a way of
solving problems, designing systems,
and understanding human behavior
that draws on concepts fundamental to
computer science… a fundamental skill for
everyone, not just computer scientists.”3

Defined this way, coding can be considered a
technical skill; computer science is an academic
discipline; and computational thinking is a
problem-solving process central to computer
science that can be applied more broadly to
problem solving and learning in any discipline.

The Relationship between Coding, Computer Science,
and Computational Thinking

Each of the three competencies explored
in this paper is valuable in its own right
and simultaneously linked to the other
two. Just as coding and computer

science have been recognized for their
importance, computational thinking should
be recognized as critical for participation
in today’s computational world.

COMPUTATIONAL
THINKING

COMPUTATIONAL
THINKING

CODINGCODING

COMPUTER
SCIENCE

COMPUTER
SCIENCE

Computational Thinking for a Computational World | 24

VI. Integrating Computational
Thinking Across K-12 Curriculum
Given the importance of computational thinking, how
can K-12 education evolve to include computational
thinking for all?

There is good news: computational thinking is
already underway in schools. A Reach Capital
Field Report on K-12 Computer Science,59
published in August 2017, showed that some
components of computational thinking are
already part of widely adopted standards
in K-12 education. In addition, as described
earlier in this paper, computational thinking
is already recognized as core to computer
science. As computer science enters more
schools, there is potential for computational
thinking to scale in those contexts.

However, progress is still needed to fully
integrate computational thinking practices
in schools. Much of the current literature on
computer science education fails to recognize
the distinctions between computer science
and computational thinking modeled in the
diagram above. In addition, our own research60
indicates that while computational thinking is

recognized as a core competency of computer
science, it is infrequently acknowledged
as a core competency applicable across
all disciplines. And even where existing
standards include aspects of computational
thinking, there is room for improvement:
they do not yet encompass the full scope of
computational thinking practices, and could
better connect to the technologies and media
that are increasingly embedded in students’
lives. To move toward full participation
by all students in a computational world,
computational thinking practices should be
common tools for learning across disciplines.

It is important to note that advocating for
computational thinking in K-12 curriculum
does not replace or compete with efforts
to expand computer science education: on
the contrary, it complements them. Where
computer science is not yet offered, integrating
computational thinking into existing disciplines
can empower educators and students
to better understand and participate in a
computational world. And schools already
teaching coding and computer science
will benefit from weaving computational
thinking across disciplines in order to enrich
and amplify lessons that are beyond the
reaches of computer science classes.

Challenges on the road ahead
Significant questions remain unanswered when
it comes to integrating computational thinking
for all. For example, the research community

Advocating for computational
thinking in K-12 curriculum
does not replace or
compete with efforts to
expand computer science
education: on the contrary, it
complements them.

https://drive.google.com/file/d/0B2eCjHNmaBGZeGpwTGlRTUJKZlU/view

Computational Thinking for a Computational World |
25

has identified issues, including the need for
an agreed-upon definition for computational
thinking; whether coding, computer science,
and computational thinking can legitimately
be separated; the best and most inclusive
pedagogy for promoting computational
thinking in children; how computational
thinking can be assessed; and whether it
is good for everyone.60, 61 This paper seeks
to surface these questions, and encourage
further collaboration between practitioners
and researchers to fully answer them.

Further, if schools, districts, and states are
struggling to find qualified computer science
teachers, how will they find teachers qualified
to deeply integrate computational thinking
across all K-12 curricula? The challenge
is one of market dynamics: how to match
growing demand for computational skills
with an increasing supply of prepared
teachers in all academic disciplines.

While the above barriers to computational
thinking in K-12 curriculum must be
overcome to achieve computational thinking

for all, an important initial consideration
for schools seeking to integrate it deeply
across all disciplines is to determine
what are they seeking to accomplish.

For example, if the goal is to develop
immediate job skills, that might lead schools to
offer coursework in programming languages
that are currently in demand by employers.
Focusing on this goal requires attention to
programming languages that may become
obsolete, and an emphasis only on coding
means that other important principles of
computational thinking may be ignored.

If the goal is to achieve full participation in
a computational world, then schools might
pursue a strategy to introduce computational
thinking across disciplines, in addition to any
computer science courses that may already
exist. Beyond introducing a new discipline, this
implies a cultural shift in which all educators
value, understand, and use the practices of
computational thinking in their teaching.
If successful, the skills students develop
may be richly valuable over a lifetime.

These 10 micro-credentials identify methods
educators can use to help students build the
core computational skills described earlier in
this paper. They also recognize key pedagogical
practices for teaching computational
thinking, such as creating inclusive learning
environments, integrating computational
thinking into existing curriculum, and assessing
computational thinking (see Appendix B: Digital
Promise Computational Thinking Educator
Micro-Credentials). Expertise in computer
science and coding is not a prerequisite for

earning these micro-credentials, and teachers
across disciplines can develop these skills for
teaching computational thinking.

The computational thinking micro-credentials
benefit everyone: educators are better
supported in charting their own pathways
of professional growth; schools are better
able to meet new challenges of education in
a computational world; and students have a
better chance of engaging in computational
thinking across a broad range of disciplines.

To address the teacher shortage challenge, Digital Promise has developed 10
educator micro-credentials that focus on the key concepts and pedagogical
practices that support the development of computational thinking. Micro-
credentials recognize educators for the skills they learn throughout their
careers in a way that is competency-based, on-demand, and personalized.

Computational Thinking for a Computational World | 26

VII. Recommendations
In this section we offer recommendations for educators
and education stakeholders who support integrating
computational thinking into K-12 education.

•	 Encourage corporate, nonprofit,
and government advocates to hold
competitions, showcases, and
celebrations that promote the value
of computational thinking in different
domains of education and the workforce.

•	 Engage a broad diversity of educators across
the curriculum in computational thinking by
developing partnerships with professional
organizations dedicated to teaching
disciplines, including social studies, literature,
biology, physics, mathematics, visual and
performing arts, and physical education.

•	 Leverage the overlap of active learning
approaches (including maker learning,
design thinking, challenge-based learning,
and others) to create a more robust
network of advocacy for pedagogies
supportive of computational thinking.

•	 Launch social and other media
campaigns to build understanding
and support for computational
thinking among parents, community
organizations, and policymakers.

Awareness and Advocacy

•	 Build on existing resources to
develop a library of Open Education
Resources (OER) that aligns with widely
adopted curriculum standards (e.g.,
Common Core State Standards, Next
Generation Science Standards) and
can be continuously improved.

•	 Develop specific approaches and
curricular materials that advance
inclusiveness and promote diversity.

•	 Develop curriculum and resources on
computational thinking through the lens of
social studies, history, and civics to teach
the limitations and impacts of computing.

•	 Develop resources to support and
leverage networks of practice for
out-of-school programs that engage
youth in computational thinking.

Curriculum and Resource Development

Computational Thinking for a Computational World | 27

•	 Expand innovative pathways for professional
learning, including additional micro-
credentials, to support educators of
different age groups and content areas.

•	 Develop and scale opportunities for
professional development for in-service
teachers, both online and in person.

•	 Create resources to support school
administrators who are integrating
computational thinking into their schools.

Teacher Training

Research

•	 Conduct research to determine the most
effective ways to incorporate computational
thinking across all subject areas at scale.

•	 Use design-based implementation research
methods utilizing researcher-practitioner
partnerships to support, document, and
scale effective, inclusive and engaging
pedagogical and assessment strategies,
with a particular focus on women
and underrepresented minorities.

•	 Develop implementation-ready strategies
for teachers and school leaders to
make computational thinking more
inclusive, equitable, and useful for the
full diversity of learners (e.g., culturally
diverse, neurologically diverse, etc.).

Computational Thinking for a Computational World | 28

VIII. Conclusion
Returning to the essential question posed in this paper: in a
computational world, what is important to know and know
how to do? The answer lies in identifying the knowledge
and skills that reflect the demands and evolution of today’s
technologies, as well as capabilities that are uniquely human
— and will remain so for the foreseeable future.

Computational thinking — a skillset for
solving complex problems, a way to
learn about topics across the curriculum,
and a necessity for full participation in a
computational world — is at the heart of what
is important to know and know how to do.

In K-12 education, advocates for computer
science are right to say that computational
thinking is at the core of that discipline.
It is also relevant across many other
domains, joining cross-cutting concepts like

global competence, social and emotional
intelligence, and critical thinking. As K-12
schools expand computer science access,
computational thinking should also be
highlighted and integrated into multiple
disciplines and provided for all students.
Computational thinking is a critical gateway
to full participation in a computational
world and ensuring equity of access to
opportunities to gain these skills is critical
for a socially just and prosperous society.

Computational Thinking for a Computational World | 29

Acknowledgements
This report was developed under the guidance of Karen
Cator, Colin Angevine, Josh Weisgrau, Chelsea Waite, and
Jeremy Roschelle of Digital Promise. Susan A. Thomas
supported the team with writing, editing, and advice.

The authors thank the experts interviewed for the content of
this paper and those who reviewed and offered comments.

•	 Hina H. Baloch (General Motors)

•	 Karen Brennan (Harvard Graduate School of Education)

•	 Ryan Clarke (Girls Who Code)

•	 Leigh Ann DeLyser (CSforAll Consortium)

•	 Shuchi Grover (ACTNext)

•	 Mark Guzdial (Georgia Tech College of Computing)

•	 Sean Justice (Texas State University)

•	 Aileen Owens (South Fayette Township School District)

•	 Kylie Peppler (Indiana University Bloomington)

•	 Willa Peragine (Harvard Graduate School of Education)

•	 Gary Stager (Constructing Modern Knowledge)

•	 Chris Stephenson (Google)

•	 Pat Yongpradit (Code.org)

This report was made possible by the generous
support of General Motors.

Computational Thinking for a Computational World | 30

Main Body Text goes here.

Appendix A:
Leading K-12
Coding Non-Profits

Computational Thinking for a Computational World | 31

Black Girls CODE (BGC)
Founded: 2011

Leadership: Kimberly Bryant, Founder and CEO

Headquarters: Oakland, California and New York City

Grade Levels: Grades 6-12

Mission/Vision

BGC’s mission is to teach one million young and pre-
teen girls of color how to code. BGC’s vision is to increase
the number of women of color in the digital space by
empowering girls of color ages 7 to 17 to become innovators
in STEM fields and builders of their own futures through
exposure to computer science and technology.

Main Programs
CODE A Brighter Future. Free hackathons for girls ages 12-17, designed to
teach young black girls how to code and design mobile apps that help solve
problems in their communities. Panels of judges — entrepreneurs, developers, and
journalists — select winning teams whose members receive prizes and educational
scholarships. Launched in 2017 in partnership with Colgate-Palmolive.

Black Girls CODE Hackathons. Hackathons for girls ages 12-17 that allow students
to participate in creating solutions to social issues within their communities
while they build their skills, confidence, and experience, and have fun.

Measuring Impact
BGC has reached more than 8,000 young women in 14 chapters around the world. In 2017,
Colgate-Palmolive became a sponsor of BGC’s CODE a Brighter Future free hackathons.
Also in 2017, General Motors teamed up with BGC to launch a Detroit chapter.

http://www.blackgirlscode.com/

Computational Thinking for a Computational World | 32

Code.org
Founded: 2013

Leadership: Hadi Partovi, Co-founder and CEO; Alice Steinglass, President

Headquarters: Seattle

Grade Levels: K-12

Mission/Vision

Code.org’s mission is to expand access to computer science
education in K-12 schools with a focus on increasing
participation by women and underrepresented minorities.
Code.org’s vision is that computer science and programming
will be a regular part of K-12 education, just like biology,
chemistry, or algebra.

Main Programs
Hour of Code. An annual campaign that has engaged 10 percent of all students in the world
and provides the leading curriculum for K-12 computer science in the largest school districts
in the United States. Hour of Code is a worldwide effort to celebrate computer science,
starting with 1-hour coding activities but expanding to all sorts of community efforts.

Code.org also works with U.S. school districts to add computer programming courses
to the core curriculum for K-12 students, and provides free online teaching and learning
materials, including course and curriculum plans, online tutorials, and teacher trainings.

Measuring Impact
In its online courses, 45 percent of students are girls, 48 percent are underrepresented minorities
and 49 percent are on free or reduced meal plans. In high school classrooms, 37 percent are girls
and 56 percent are African American or Hispanic. Hour of Code has served nearly 450 million (10
percent of students in the world), 49 percent of whom are female. More than 650,000 teachers
have signed up to teach intro courses and more than 20 million students are enrolled. More than
120 of the largest school districts have partnered to add computer science to the curriculum—10
percent of all U.S. students and 15 percent of Hispanic and African American students. More
than 20 U.S. states have changed policies to support computer science in K-12 education.
Code.org courses are available in more than 50 languages and are used in 180+ countries.

https://code.org/

Computational Thinking for a Computational World | 33

CodeNow
Founded: 2011

Leadership: Ryan Seashore, Founder and Chairman of the Board; Neal Sales-Griffin, CEO

Headquarters: New York City

Grade Levels: High school

Mission/Vision

CodeNow’s mission is to provide access to computer
programming for students who do not have access to these
learning opportunities. Its vision is to transform high school
students into coders, designers, and product managers
by teaching them to solve meaningful problems in their
communities with software.

Main Programs
CodeNow 2.0. A four-phase program model launched in 2017 that educates students
through in-person and online learning experiences. The four phases are:

1.	 Weekend Workshops. 4 days (30 hours) of in-person instruction where participants
learn how to go from an idea to a full-fledged, functional web application.

2.	 R&D Phase. Unlimited access to 60+ hours of self-paced, online learning and a workforce
readiness program that includes in-person meetups and mentorship at partner tech
companies. Students have opportunities to discover different roles within the tech industry.

3.	 HackNow Hackathons. 1–2 days (20 hours) of team building, in-person
support, mentorship, and awards and prizes for competing amongst peers
to build and launch a civic solution web application within 48 hours.

4.	 Summer Competition. 8–12 week (100 hours) national competition where teams of students
create solutions utilizing product development, entrepreneurship, and advanced software
engineering techniques to solve real problems affecting their lives and communities.

Measuring Impact
CodeNow has taught more 2,000 underrepresented high school students how to code
and engaged more than 500 volunteers for a total of nearly 13,000 volunteering hours.

https://www.codenow.org/

Computational Thinking for a Computational World | 34

CSforAll Consortium
Founded: 2016

Leadership: Michael Preston, Co-Founder of CSforAll
Consortium, and Executive Director of CSNYC

Headquarters: New York City

Grade Levels: High school

Mission/Vision

The CSforAll Consortium’s mission is to make computer
science accessible to K-12 students and encourage computer
science education in K-12 schools. The Consortium serves as
the national hub of the Computer Science for All movement,
which works to enable all students in grades K-12 to achieve
computer science literacy as an integral part of their
educational experience, both in and out of school.

Main Programs
The CSforAll Consortium sets a collective agenda together with its membership
of content providers, education associations, researchers, and supporters to help
schools and districts provide all students with rigorous K-12 computer science
education. The Consortium serves as a platform for connecting diverse stakeholders,
providing support to new and developing initiatives, tracking and sharing progress,
and communicating about the work to local and national audiences.

Membership comprises organizations around the country that share the
mission of making computer science accessible to K-12 students, and includes
organizations, researchers, and funding organizations. CSforAll hosts annual
summits to bring together leaders in K-12 computer science education and like-
minded organizations to share their progress and discuss new initiatives.

Initial funding was provided by the National Science Foundation (NSF).

Measuring Impact
In 2016–2017, more than 5 percent of schools nationally participated in a program offered by
the members of the CSforAll Consortium. The consortium has more than 400 members that
have provided nearly 200 opportunities to learn and represent 39 U.S. states and territories.

http://www.csforall.org/
https://csnyc.org/
https://csnyc.org/

Computational Thinking for a Computational World | 35

CSNYC
Founded: 2013

Leadership: Michael Preston, Executive Director

Headquarters: New York City

Grade Levels: K-12

Mission/Vision

CSNYC’s mission is to ensure that all of New York City’s 1.1
million public school students have access to a high-quality
computer science education that puts them on a pathway to
college and career success.

Main Programs
CSNYC’s four areas of program development are as follows:

1.	 Community Building. CSNYC is committed to building communities through multiple
sectors and stakeholders committed to K-12 computer science education.

2.	 Industry Engagement. CSNYC supports interaction with and exposure to the tech industry for
students through job shadowing, internships, site visits, and more, to inspire future careers.

3.	 Teacher Pipeline. CSNYC sponsors programs to ensure the sustainability
of the supply of teachers able to teach K-12 computer science.

4.	 Research. CSNYC supports K-12 students engaging in computer science
research with professionals and the broader CS research community.

In addition, CSNYC oversees the national CSforAll Consortium
(see separate profile in this appendix).

Measuring Impact
In 2015, CSNYC partnered with the City of New York to launch CS4All, which has enabled
5,000 teachers to be able to teach computer science in almost 250 elementary, middle,
and high schools in New York. In 2016, CSNYC launched the CSforAll Consortium, which
will keep track of the impact of country-wide initiatives of coding in K-12 schools.

https://csnyc.org/
http://www.csforall.org/
http://www.csforall.org/

Computational Thinking for a Computational World | 36

Exploring Computer Science (ECS)
Founded: Project evolved out of the Computer Science Equity Alliance (CSEA), founded in 2004

Team: Gail Chapman, Julie Flapman, Joanna Goode, John Landa,
Jane Margolis, Solomon Russell, Jean Ryoo, Todd Ullah

Location: Los Angeles

Grade Levels: High school

Mission

ECS is a K-12/university partnership funded by the National
Science Foundation (NSF) whose mission is to increase
and enhance the computer science learning opportunities
in the Los Angeles Unified School District (LAUSD), the
second largest school district in the country, and broaden
the participation of African-American, Latino/a, and female
students in learning computer science.

Programs
Curriculum. Uses an inquiry-based instruction model where students are guided
through small group learning activities, exploration, role playing, and creativity.
The curriculum is a yearlong course for high schoolers that covers the following
major topics and areas: human computer interaction, problem solving, web
design, programming, computing and data analysis, and robotics.

Professional Development. A professional learning community of teacher leaders that consists
of a summer institute focused on both course content and pedagogical knowledge, along with
ongoing PD and inquiry groups throughout the year, and an in-classroom coaching program.

Measuring Impact
ECS has grown from LAUSD to a national level program as the curriculum and PD programs
for teachers have been implemented in many U.S. states. ECS is supported and carried
out in the seven largest school districts in the country. Overall, ECS has served over 8,000
high school students, and over 70 percent reported “liking” or “loving” the ECS curriculum.
The demographic breakdown of student enrollment from the 2013–14 school year was
almost 50 percent female, 70 percent Latino/a, 10 percent African American, 7 percent
white, 6 percent Asian, and just under 4 percent Filipino and Native American.

http://www.exploringcs.org/about/mission

Computational Thinking for a Computational World | 37

Girls Who Code
Founded: 2012

Leadership: Reshma Saujani, Founder and CEO

Headquarters: New York City

Grade Levels: Grades 6-12

Mission/Vision

Girls Who Code’s mission is to close the gender gap in
tech, one girl at a time. Its vision is a future where the next
generation of girls and boys prosper through creativity,
bravery, and teamwork.

Main Programs
Girls Who Code is building the largest pipeline of future female engineers in the United
States by offering learning opportunities for students and alumnae to deepen their computer
science skills, as well as their confidence; creating clear pathways for alumnae from
middle and high school into the computing workforce; building a supportive sisterhood
of peers and role models who help students and alumnae persist and succeed.

Clubs Program. After-school clubs for 6-12th grade girls to explore coding and programming,
often led by volunteers. The clubs take place across the United States and in most major cities.

Summer Immersion Program. 7-week summer programs for 10-11th grade girls to
gain serious programming skills and experience and get exposure to tech jobs.

Measuring Impact
Girls Who Code has programs and clubs in every U.S. state and has partnered with major tech
companies. By the end of 2017, 40,000 girls will have been involved in its programs, with 55
percent in high school, 37 percent in middle school, and 8 percent in college. Of these, 65
percent of students participating in its clubs and 93 percent of summer immersion program
students say they are interested in majoring in computer science because of Girls Who Code.

https://girlswhocode.com/

Computational Thinking for a Computational World | 38

ScriptEd
Founded: 2012

Leadership: Maurya Couvares, Founder and Executive Director

Headquarters: New York City

Grade Levels: High school

Mission/Vision

ScriptEd equips students in under-resourced schools with
the fundamental coding skills and professional experiences
that together unlock potential and create access to careers in
technology.

Main Programs
Programming Courses. Yearlong foundational and advanced courses in
programming in partner schools, taught on a volunteer basis by software
developers. For students who complete the advanced courses, ScriptEd matches
students with paid summer internships in local tech companies.

Hackathons. Hackathons for students to work together on projects and showcase their skills.

Measuring Impact
In the 2015–2016 school year, ScriptEd was in 31 high schools in New York City and
served over 600 students. In 2017, ScriptEd began a pilot program in San Francisco. In the
2014–2015 school year, ScriptEd’s student population was 43 percent African American, 30
percent Hispanic, 22 percent Asian, and 3 percent White. In addition, 36 percent of students
were female; 87 percent of our students qualified for free or reduced-price lunch.

https://scripted.org/

Computational Thinking for a Computational World | 39

Appendix B:
Digital Promise
Computational
Thinking Educator
Micro-Credentials

Computational Thinking for a Computational World | 40

Digital Promise has built an innovative system of micro-credentials to recognize educators for the
skills they learn throughout their careers in order to craft powerful learning experiences for their
students. Each micro-credential in Digital Promise’s system is:

•	 Competency-based: Micro-credentials allow educators to
focus on a discrete skill related to their practice.

•	 On-demand: Through an agile online platform that clearly identifies each
micro-credential’s competency and required evidence, educators can start and
continue the process of earning micro-credentials on their own time.

•	 Personalized: Because educators are able to select the micro-credentials they
wish to earn, they can create their own professional learning journey aligned
to their specific student needs and school-wide instructional goals.

•	 Shareable: Once educators earn micro-credentials, they can display the digital
badges on Edmodo, LinkedIn, their CV/résumé, or a blog to signal their demonstrated
competence wherever their professional journey might take them.

Grounded in research on computational thinking and learning sciences, Digital Promise has
created 10 educator micro-credentials recognizing the key elements and pedagogical practices of
computational thinking.

•	 Computational thinking: key elements
-- Working with data. Educator supports student inquiry practices using

data to investigate questions and communicate findings.
-- Creating algorithms. Educator supports students in using algorithmic thinking to

formulate procedures as algorithms and compare different solutions to the same problem.
-- Understanding systems with computational models. Educator supports students in

developing systemic understandings of concepts by engaging with computational models.
-- Creating computational models. Educator supports students in using computational

thinking to model the behavior of a system that has interrelated parts.
-- Developing computational literacies. Educator supports students in

understanding and participating in computational literacies.

•	 Computational thinking: pedagogical practices
-- Creating an inclusive environment for computational thinking. Educator

cultivates a learning environment that provides students opportunities to build
knowledge and express themselves through computational thinking.

-- Integrating computational thinking into curriculum. Educator supports students in
using computational thinking to develop understandings of ideas central to a discipline.

-- Assessing computational thinking. Educator uses assessment feedback
to support student growth in computational thinking.

-- Using computers as tools for thinking. Educator documents and analyzes
the ways students use computers as tools for representing their thought
processes and connecting their learning to that of their peers.

-- Selecting appropriate tools for computational thinking. Educator
selects computational tools that provide the appropriate support to
meet computational thinking learning goals for diverse students.

View these micro-credentials and others in Digital Promise’s
ecosystem by visiting www.digitalpromise.org/bloomboard.

http://digitalpromise.org/bloomboard

Computational Thinking for a Computational World | 41

References
1	 Sanders, L. (2017). Smartphones may be changing the way we think. Retrieved from

https://www.sciencenews.org/article/smartphones-may-be-changing-way-we-think

2	 Tucker, A., Deek, F., Jones, J., McCowan, D., Stephenson, C., & Verno,
A. (2003). A model curriculum for K–12 computer science. Final Report
of the ACM K-12 Task Force Curriculum Committee, CSTA.

3	 Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35.

4	 World Economic Forum. (2016). The Future of Jobs. Retrieved
from http://reports.weforum.org/future-of-jobs-2016/

5	 Rifkin, J. (2016, January 14). Davos Conference Misfires On 2016
Theme. Retrieved from https://www.huffingtonpost.com/jeremy-
rifkin/the-2016-world-economic-f_b_8975326.html

6	 Berger, T & Frey C. (2016). Structural Transformation in the OECD: Digitalisation,
Deindustrialisation and the Future of Work. OECD Social, Employment and Migration
Working Papers No. 193. Retrieved from http://www.oecd-ilibrary.org/social-issues-
migration-health/structural-transformation-in-the-oecd_5jlr068802f7-en

7	 Smith, J. (2017, August 3). A Robot Can Be a Warehouse Worker’s Best
Friend. WSJ Online. Retrieved from https://www.wsj.com/articles/a-
robot-can-be-a-warehouse-workers-best-friend-1501752600

8	 Chandarana, D., Faridi, F., Moon, J., & Schulz, C. (2017, July). How cognitive
technologies are transforming capital markets. McKinsey & Company.
Retrieved from https://www.mckinsey.com/industries/financial-services/
our-insights/cognitive-technologies-in-capital-markets

9	 Kanellos, M. (2016, January 13). Hold The Laughter: Why The Smart Fridge Is A Great
Idea. Retrieved from https://www.forbes.com/sites/michaelkanellos/2016/01/13/
hold-the-laughter-why-the-smart-fridge-is-a-great-idea/#648442437d40

10	 IBM. (n.d.). Watson. Retrieved from https://www.ibm.com/watson/

11	 DeepMind. (n.d.). AlphaGo. Retrieved from https://deepmind.com/research/alphago/

12	 Stanford Robotics Lab. (n.d.). Ocean One Lands on the Moon. Retrieved
from http://cs.stanford.edu/group/manips/ocean-one.html

13	 Code.org. (n.d.). Leaders and trend-setters all agree on one
thing. Retrieved from https://code.org/quotes

14	 Della Cava, M. (2015, August 20). Should students learn coding? Students,
schools disagree, poll finds. USA Today. Retrieved from https://www.usatoday.
com/story/tech/2015/08/20/google-gallup-poll-finds-parents-want-
computer-science-education-but-administrators-arent-sure/31991889/

15	 Papert, S. & Solomon, C. (1971). Twenty Things to Do with a Computer.
Retrieved from http://www.stager.org/articles/twentythings.pdf

16	 Papert, S. (1980). Mindstorms: Children, Computers, and
Powerful Ideas. New York, NY, USA: Basic Books, Inc.

17	 Scratch. (n.d.). Retrieved from https://scratch.mit.edu/

https://www.sciencenews.org/article/smartphones-may-be-changing-way-we-think
http://reports.weforum.org/future-of-jobs-2016/
https://www.huffingtonpost.com/jeremy-rifkin/the-2016-world-economic-f_b_8975326.html
https://www.huffingtonpost.com/jeremy-rifkin/the-2016-world-economic-f_b_8975326.html
http://www.oecd-ilibrary.org/social-issues-migration-health/structural-transformation-in-the-oecd_5jlr068802f7-en
http://www.oecd-ilibrary.org/social-issues-migration-health/structural-transformation-in-the-oecd_5jlr068802f7-en
https://www.wsj.com/articles/a-robot-can-be-a-warehouse-workers-best-friend-1501752600
https://www.wsj.com/articles/a-robot-can-be-a-warehouse-workers-best-friend-1501752600
https://www.mckinsey.com/industries/financial-services/our-insights/cognitive-technologies-in-capital-markets
https://www.mckinsey.com/industries/financial-services/our-insights/cognitive-technologies-in-capital-markets
https://www.forbes.com/sites/michaelkanellos/2016/01/13/hold-the-laughter-why-the-smart-fridge-is-a-great-idea/#648442437d40
https://www.forbes.com/sites/michaelkanellos/2016/01/13/hold-the-laughter-why-the-smart-fridge-is-a-great-idea/#648442437d40
https://www.ibm.com/watson/
https://deepmind.com/research/alphago/
http://cs.stanford.edu/group/manips/ocean-one.html
https://code.org/quotes
https://www.usatoday.com/story/tech/2015/08/20/google-gallup-poll-finds-parents-want-computer-science-education-but-administrators-arent-sure/31991889/
https://www.usatoday.com/story/tech/2015/08/20/google-gallup-poll-finds-parents-want-computer-science-education-but-administrators-arent-sure/31991889/
https://www.usatoday.com/story/tech/2015/08/20/google-gallup-poll-finds-parents-want-computer-science-education-but-administrators-arent-sure/31991889/
http://www.stager.org/articles/twentythings.pdf
https://scratch.mit.edu/

Computational Thinking for a Computational World | 42

18	 MIT Media Lab. (n.d.). Lifelong Kindergarten: Engaging people
in creative learning experiences. Retrieved from https://www.
media.mit.edu/groups/lifelong-kindergarten/overview/

19	 Gilpin, L. (2014, December 8). How ‘Hour of Code’ Sparked a Movement
That Could Teach 100 Million People to Code. Tech Republic. Retrieved
from https://www.techrepublic.com/article/how-hour-of-code-sparked-
a-movement-that-could-teach-100-million-people-to-code/

20	 Hour of Code. (n.d.). Retrieved from https://hourofcode.com/us

21	 Burning Glass Technologies. (2016, June). Beyond Point and Click: The Expanding Demand
for Coding Skills. Retrieved from http://burning-glass.com/research/coding-skills/

22	 Dewey, J. (2007). Experience and education. Simon and Schuster.

23	 Kafai, Y. & Margolis, J. (2014, October 7). Why the ‘coding for all’ movement
is more than a boutique reform. Washington Post. Retrieved from https://
www.washingtonpost.com/news/answer-sheet/wp/2014/10/17/why-
the-coding-for-all-movement-is-more-than-a-boutique-reform

24	 Code.org. (n.d.). About us. Retrieved from https://code.org/about

25	 Black Girls Code. (n.d.). Retrieved from http://www.blackgirlscode.com/

26	 Girls Who Code. (n.d.). Retrieved from https://girlswhocode.com/

27	 Code Now. (n.d.). Retrieved from https://www.codenow.org/

28	 Next Generation Science Standards. (n.d.). Retrieved
from https://www.nextgenscience.org/

29	 World Economic Forum. (2016). The Future of Jobs. Retrieved
from http://reports.weforum.org/future-of-jobs-2016/

30	 National Research Council. (2011). Report of a Workshop of Pedagogical
Aspects of Computational Thinking. Retrieved from http://people.
cs.vt.edu/~kafura/CS6604/Papers/NRC-Pegagogy-CT.pdf

31	 Common Core State Standards Initiative. (n.d.). Retrieved
from http://www.corestandards.org/

32	 Tizon, C. (2016, March 9). Undergraduate Degree Earners Report, 2014-2015.
National Student Clearinghouse Research Center. Retrieved from https://
nscresearchcenter.org/undergraduatedegreeearners-2014-15/

33	 Computing Research Association. (2017). Generation CS:
Computer Science Undergraduate Enrollments Surge Since 2006.
Retrieved from https://cra.org/data/Generation-CS/

34	 Google Inc. & Gallup Inc. (2016). Diversity Gaps in Computer Science: Exploring the
Underrepresentation of Girls, Blacks and Hispanics. Retrieved from http://goo.gl/PG34aH

35	 Georgia Tech School of Computer Science. (2016, December 7). Analysis of 2017
AP Computer Science Testing Reveals Ongoing Need for Qualified High School
Teachers. Retrieved from http://www.scs.gatech.edu/news/584765/analysis-2016-
ap-computer-science-testing-reveals-ongoing-need-qualified-high-school

https://www.media.mit.edu/groups/lifelong-kindergarten/overview/
https://www.media.mit.edu/groups/lifelong-kindergarten/overview/
https://www.techrepublic.com/article/how-hour-of-code-sparked-a-movement-that-could-teach-100-million-people-to-code/
https://www.techrepublic.com/article/how-hour-of-code-sparked-a-movement-that-could-teach-100-million-people-to-code/
https://hourofcode.com/us
http://burning-glass.com/research/coding-skills/
https://www.washingtonpost.com/news/answer-sheet/wp/2014/10/17/why-the-coding-for-all-movement-is-more-than-a-boutique-reform
https://www.washingtonpost.com/news/answer-sheet/wp/2014/10/17/why-the-coding-for-all-movement-is-more-than-a-boutique-reform
https://www.washingtonpost.com/news/answer-sheet/wp/2014/10/17/why-the-coding-for-all-movement-is-more-than-a-boutique-reform
https://code.org/about
http://www.blackgirlscode.com/
https://girlswhocode.com/
https://www.codenow.org/
https://www.nextgenscience.org/
http://reports.weforum.org/future-of-jobs-2016/
http://people.cs.vt.edu/~kafura/CS6604/Papers/NRC-Pegagogy-CT.pdf
http://people.cs.vt.edu/~kafura/CS6604/Papers/NRC-Pegagogy-CT.pdf
http://people.cs.vt.edu/~kafura/CS6604/Papers/NRC-Pegagogy-CT.pdf
http://www.corestandards.org/
https://nscresearchcenter.org/undergraduatedegreeearners-2014-15/
https://nscresearchcenter.org/undergraduatedegreeearners-2014-15/
https://cra.org/data/Generation-CS/

Computational Thinking for a Computational World | 43

36	 Code.org. (2017). 2007-2017 AP Computer Science Exam Results.
Retrieved November 22, 2017 from https://docs.google.com/spreadsheets/
d/17wvXkEq95bRfsY6Sx-IIk8XxKPk8cutho6c7JyJP1UM/edit#gid=0

37	 The United Nations Office for Disaster Risk Reduction. (2015). Women’s
Leadership in Risk-Resilient Development. Retrieved from http://www.
unisdr.org/files/42882_42882womensleadershipinriskresilien.pdf

38	 Phillips, K. (2014, October 1). How Diversity Makes Us Smarter.
Scientific American. Retrieved from https://www.scientificamerican.
com/article/how-diversity-makes-us-smarter/

39	 Code.org. (n.d.). Nine Policy Ideas to Make Computer Science
Fundamental to K-12 Education. Retrieved November 22, 2017
from https://code.org/files/Making_CS_Fundamental.pdf

40	 Code.org. (n.d.). State Tracking 9 Policies. Retrieved November 22,
2017 from https://docs.google.com/spreadsheets/d/1YtTVcpQX
oZz0IchihwGOihaCNeqCz2HyLwaXYpyb2SQ/pubhtml

41	 US Department of Education Office of Career, Technical, and Adult Education.
(2016, December). Expanding Computer Science Education with Career and
Technical Education. Retrieved from https://sites.ed.gov/octae/2016/12/19/
expanding-computer-science-education-with-career-and-technical-education/

42	 Computer Science Teachers Association. (n.d.). About the CSTA K-12 Computer
Science Standards. Retrieved from https://www.csteachers.org/page/standards

43	 K-12 Computer Science. (n.d.). K-12 Computer Science
Framework. Retrieved from https://k12cs.org/

44	CS for All Consortium. (n.d.). Retrieved from http://www.csforall.org/

45	 Smith, M. (2016, January 30). Computer Science for All. The White House,
President Barack Obama. Retrieved from https://obamawhitehouse.
archives.gov/blog/2016/01/30/computer-science-all

46	 CSNYC. (n.d.). Retrieved from https://csnyc.org/

47	 Gallup Inc. (2016). Pioneering Results in the Blueprint of U.S. K-12 Computer
Science Education. Retrieved from http://csedu.gallup.com/home.aspx

48	 United States Department of Education. (n.d.). 2016 Title II
Reports: National Teacher Preparation Data. Retrieved November
22, 2017 from https://title2.ed.gov/Public/Home.aspx

49	 K-12 Computer Science. (n.d.). Navigating the Practices. Retrieved
from https://k12cs.org/navigating-the-practices/

50	 Christo. (2014). The Floating Piers. Retrieved from http://
christojeanneclaude.net/projects/the-floating-piers

51	 Denning, P. (2017). Computational Thinking in Science. American Scientist. Retrieved
from https://www.americanscientist.org/article/computational-thinking-in-science

52	 Bundy, A. (2007). Computational thinking is pervasive. Journal
of Scientific and Practical Computing, 1(2), 67-69.

https://docs.google.com/spreadsheets/d/1YtTVcpQXoZz0IchihwGOihaCNeqCz2HyLwaXYpyb2SQ/pubhtml
https://sites.ed.gov/octae/2016/12/19/expanding-computer-science-education-with-career-and-technical-education/
http://csedu.gallup.com/home.aspx
https://k12cs.org/navigating-the-practices/
http://christojeanneclaude.net/projects/the-floating-piers
http://christojeanneclaude.net/projects/the-floating-piers
https://www.americanscientist.org/article/computational-thinking-in-science

Computational Thinking for a Computational World | 44

53	 Cambridge Assessment. (2013, January). What is literacy? An investigation into
definitions of English as a subject and the relationship between English, literacy
and ‘being literate’. Retrieved from http://www.cambridgeassessment.org.uk/
Images/130433-what-is-literacy-an-investigation-into-definitions-of-english-as-a-
subject-and-the-relationship-between-english-literacy-and-being-literate-.pdf

54	 Kafai, Y. B. (2016). From computational thinking to computational participation
in K-12 education. Communications of the ACM, 59(8), 26-27.

55	 diSessa, A. A. (2000). Changing minds: Computers,
learning, and literacy. Cambridge: MIT Press.

56	 Vee, A. (2013). Understanding computer programming as a
literacy. Literacy in Composition Studies, 1(2), 42-64.

57	 Vee, A. (2017). Coding Literacy: How Computer
Programming is Changing Writing. MIT Press.

58	 Grover, S., & Pea, R. (2013). Computational thinking in K–12: A review
of the state of the field. Educational Researcher, 42(1), 38-43.

59	 Reach Capital. (2017, August). Field Report on K12 Computer Science. Retrieved November
22, 2017 from https://drive.google.com/file/d/0B2eCjHNmaBGZeGpwTGlRTUJKZlU/view

60	 Private conversations with computer science education researchers and educators

http://www.cambridgeassessment.org.uk/Images/130433-what-is-literacy-an-investigation-into-definitions-of-english-as-a-subject-and-the-relationship-between-english-literacy-and-being-literate-.pdf
http://www.cambridgeassessment.org.uk/Images/130433-what-is-literacy-an-investigation-into-definitions-of-english-as-a-subject-and-the-relationship-between-english-literacy-and-being-literate-.pdf
http://www.cambridgeassessment.org.uk/Images/130433-what-is-literacy-an-investigation-into-definitions-of-english-as-a-subject-and-the-relationship-between-english-literacy-and-being-literate-.pdf
https://drive.google.com/file/d/0B2eCjHNmaBGZeGpwTGlRTUJKZlU/view

