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Generalizability of a Technology-Based Intervention to 
Enhance Conceptual Understanding in Mathematics

Three previously reported experiments found that a technology-enhanced intervention 
increased student conceptual understanding of mathematics in Texas. To investigate 
generalizability to broader populations and settings, we triangulate among three methods. 
First, we examine interactions between demographic variables and intervention effects. 
We found that the intervention was not sensitive to typical variations in school populations. 
Second, we use propensity score methods to measure the match between the sample 
and a broader population. The sample matches the school population in Texas, with 
minor exceptions; we report adjusted effect sizes. Third, quasi-experimental research 
with populations outside of Texas are considered. Results from Florida and England 
were consistent with Texas findings. Across three methods, the results suggest that the 
experimental findings generalize across populations and settings. This work also establishes a 
practical approach to investigating generalizability in experimental research in schools.

Introduction
How can educational researchers establish the degree 
to which a positive finding is likely to generalize from 
a sample to a broader inference population? The 
textbook answer is that the original research should 
be conducted with a probability sample of the target 
population (Cochran & Cox, 2002). In practice, 
however, it is rarely possible to obtain a probability 
sample of schools (Olsen, Orr, Bell, & Stuart, 
2013). Educational researchers, constrained by the 
pragmatics of recruiting and working with schools, 
rarely have the ability to conduct their research in a 
perfect microcosm of the full population of interest 
(e.g., Tipton et al, 2016). 

And yet, considering generalizability of findings is 
important (Hedges, 2013; Orr, 2015). Even when an 
intervention is found to work in one school setting, 
it may not work in other school settings. This may 
be particularly true when the intervention involves 
technology, as schools have different capacities to 
integrate technology into instruction (Means & Haertel, 
2004). Thus school leaders rightfully ask of even 
technologies with a research base “yes, it worked in the 
schools that participated in the research, but will it work 
in my school district?” Likewise, to cover the diversity 
in conditions, practices, and people found in a large 
country such as the United States, policy makers need 
to know not only if a new intervention for science or 
math education “works” but also about variability in the 
instructional contexts in which it works (Berliner, 2002).
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This article considers external validity for a particular 
intervention aimed at increasing students’ conceptual 
understanding of challenging topics in mathematics. 
In primary research, a series of experiments was 
conducted across varied demographic settings to 
evaluate the efficacy of this intervention and, as will 
be discussed below, the results were positive. 

This article focuses on additional research undertaken 
to investigate the extent to which these findings 
might generalize beyond the population and setting 
of the initial study. Cook and Campbell (1979) 
argue for considering generalization in two ways: (1) 
across subpopulations in an experimental sample and  
(2) to additional target populations of interest, beyond 
an experimental sample. To establish generalization 
across subpopulations of interest, interactions between 
background factors and the intervention should be 
evaluated. With regard to external validity beyond 
the confines of a particular experimental sample, 
the two key concerns are variation in populations 
and variation in settings (Bracht & Glass, 1968). To 
evaluate the first concern, researchers examine the 
degree to which the experimental sample matches 
the larger population of interest (e.g., Stuart, Cole, 
Bradshaw & Leaf, 2011; Tipton, 2014). To evaluate 
the second concern, additional research can be 
conducted in additional settings. 

This article considers exactly these aspects by 
triangulating among three possible ways to explore 
generalizability: (1) by looking for interactions between 
contextual variables within the original experimental 
sample; (2) by estimation of a population average 
treatment effect for a clearly defined target population 
(by adjusting the experimental sample); and (3) by 
conducting additional research in new and different 
settings. We report on the approach to triangulation 
and its findings for a particular use of technology in 
mathematics education, considering the strengths 
and weakness of each method in the triangulation. 
To establish a context, we first provide background 
on the nature of the intervention and the previously 
published results.

Dynamic Representations to Improve 
Conceptual Understanding
Although using technology is frequently recommended 
in policy statements regarding the improvement 
of mathematics and science learning, the different 
technologies proposed for education do not have 
equally strong research evidence (U.S. Department 
of Education, 2010). Technologies have different 
mechanisms for influencing the learning process – 
a technology that provides social network among 
students is different from one that helps students to 
visualize mathematical concepts and is different again 
from a technology that “personalizes” learning. 

One application of technology that has a relatively 
strong research base in mathematics education is the 
use of dynamic representations to enhance visualization 
of complex ideas and relationships (Kaput, 1992; Heid 
& Blume, 2008). For example, an algebraic function 
can be linked to a graph, a table and a simulation of a 
familiar motion, such that changes in one representation 
are immediately reflected in the other representations. 
Although the research base on dynamic representations 
mostly consists of small studies, reviews suggest that 
dynamic representations may be particularly effective for 
increasing students’ conceptual understanding (Kaput, 
Hegedus, & Lesh, 2007). Theorists in mathematics 
education describe conceptual understanding as 
connections or relationships among diverse aspects of 
a concept and its uses (Hiebert & Carpenter, 1992). 
A particularly important set of relationships is among 
multiple representations of the concept, for example, 
the concept of “rate” as represented by the slope 
of a line in a graph or as the co-variation of pairs of 
numbers in a table (Brenner et al, 1997). Technology 
has the potential to help students to make sense of 
these relationships by revealing how change in one 
representation (for example, an increased slope) 
corresponds to change in another representation (for 
example, more rapid growth of the numeric value 
of a dependent variable as the numeric value of the 
independent variable increases) (Kaput, 1992). 
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To leverage this potential in classrooms, program 
developers created two interventions, one for 7th 
grade mathematics and one for 8th grade mathematics. 
Each was an integrated “curricular activity system” 
(Roschelle, Knudsen & Hegedus, 2010; Vahey et 
al., 2013) comprised of technology, workbook, and 
professional development components to make 
appropriate use of the dynamic representation 
capabilities more likely across varied classroom settings. 
The curriculum workbooks and activities were used as 
replacement units to tackle difficult concepts in the 
middle school mathematics curriculum. There were 
two replacement units developed, each intended for 
approximately three weeks of instruction, addressing 
key topics on the path to Algebra. The unit for 7th 
grade focused on rate and proportionality, and the 
unit for 8th grade focused on linear function. Both 
the already-published experimental results and this 
report on generalizability thus refer to an integration 
of dynamic representation software, paper curriculum 
and teacher professional development. 

Within these integrated units, the hallmarks of the 
SimCalc approach to the mathematical topics are the 
following:

1.	 Anchoring students’ efforts to make sense of 
conceptually rich mathematics in their experience 
of familiar motions, which are portrayed as 
computer animations;

2.	 Engaging students in activities to make and analyze 
graphs that control animations;

3.	 Introducing piecewise linear functions as models 
of everyday situations with changing rates;

4.	 Connecting students’ mathematical understanding 
of rate and proportionality across key mathematical 
representations (algebraic expressions, tables, 
graphs) and familiar representations (narrative 
stories and animations of motion);

5.	 Structuring pedagogy around a cycle that asks 
students to make predictions, compare their 
predictions with mathematical reality, and explain 
any differences. 

Most distinctively, the software presents animations of 
motion related to position vs. time graphs (see Figure 
1). Students can control the motions of animated 
characters by building and editing mathematical 
functions in either graphical or algebraic forms. 
After editing the functions, students can press a play 
button to see the corresponding animation. Functions 
can be displayed in algebraic, graphical, and tabular 
form, and students are often asked to tell stories that 
correspond to the functions (and animations). 

The software is meant to be used in what Dewey 
described as a cycle of “doing and undergoing” (Dewey, 
1938) – wherein students investigate a mathematical 
phenomenon by changing the variable features of 
one mathematical representation and then seeing 
what happens in other representations. The program 
developers view student use of the software, use of 
pencil-and-paper workbooks, and teacher explanations 
and teacher-led discussions as complementary 
activities; classroom discussion are expected to help 
students to understand the connections among 
representation that they are experiencing via the 
software. The workbooks guide students to conduct 
investigations in a curricular sequence aimed at 
gradually building a robust understanding of the 
relationships entailed in a concept such as rate and the 
professional development aims to support teachers in 
using the software and workbooks as fodder for their 
students’ conceptual development.
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Published Experimental Research
Key elements of previously published experimental 
research from Scaling Up SimCalc form the basis for 
the investigations of generalization reported below. 
To set the context, we begin with a summary of this 
research (Roschelle et al, 2010).

The samples for the experiments reported in the 
published findings (Roschelle et al, 2010) were 
classrooms in Texas schools. Researchers chose Texas 
for this work because it is a large and diverse state 
and already had a public and fairly comprehensive 
database of all schools (this is common today but was 
not common a decade ago when this research began). 
Access to quantitative data that describes variation in 
schools throughout a state is essential to examining 
generalizability, as without population data, there is 
no means for examining the degree to which a sample 
is representative of the broader population. Schools in 

Texas vary notably in poverty (typically measured by 
the percentage of students enrolled in a federal free 
or reduced price lunch program), as well as in ethnic 
composition (e.g., some schools are predominantly 
White and others are predominantly Hispanic). Many 
factors can contribute to schools’ capacity to effectively 
integrate technology. While large, the experimental 
samples included only about 7% of the public middle 
schools in Texas. 

Three studies, conducted in Texas in the 2005-06 and 
2006-07 school years, tested the effects of the two 
3-week interventions for 7th and 8th grade mathematics 
compared to traditional instruction addressing the 
same content. Study 1 was a randomized experiment 
with 7th-grade teachers in which 48 treatment group 
teachers (796 students with full data) implemented 
the intervention and 47 control group teachers (825 

Figure 1: SimCalc screen showing two representations, the animation of soccer players running on a field 
and a graph of their motion
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students) implemented their usual curriculum. Study 2 
was a quasi-experiment in which we followed the control 
group teachers from Study 1 as they implemented the 
intervention in the subsequent year. This allowed 
a quasi-experimental comparison of two cohorts of 
students taught by the same teacher across years. A 
total of 30 teachers completed this research in Study 
2, with 510 students in year 1 and 538 students in 
year 2. Study 3 was a randomized experiment in with 
8th grade teachers in which 33 treatment teachers 
(522 students) implemented the intervention and 23 
control-group teachers (303 students) implemented 
their usual curriculum. In addition, the 8th-grade 
experiment employed a train-the-trainer model of 
TPD, an important basis for efforts to further scale 
up the intervention.

The tested interventions addressed rate and 
proportionality in 7th grade and linear function in 
8th grade, foundational topics for Algebra. Both 
topics are part of the transition to multiplicative 
reasoning, considered one of the essential difficulties 
that students experience in middle school 
mathematics on the path to Algebra and beyond. 

Outcomes were measured on researcher-developed 
assessments addressing conceptual understanding 
of rate and proportionality (7th grade) and linear 
function (8th grade). Researcher-developed 
measures were used rather than the Texas state 
test because the Texas state test was weak in 
measuring conceptual understanding. Each of the 
two researcher-developed assessments had two 
subscales. One subscale addressed foundational 
concepts typically covered in the grade-level 
standards, curricula, and assessments. Many of 
these items were drawn from released items from 
the Texas state test, and the subscale was intended 
to test for any improvement or harm to baseline 
student performance as already measured by the 

state. The second subscale addressed the essentials 
of conceptual understanding that are building 
blocks for algebra, calculus, and the sciences. Many 
of these items were drawn from released items from 
NAEP, TIMSS, and other tests. Each assessment was 
subjected to a set of validation studies, including 
expert panel review, cognitive think-alouds, and 
field-testing. The 7th grade assessment of rate and 
proportionality had 30 items and an alpha of .86, 
and the 8th grade assessment of linear function had 
36 items and an alpha of .91. More details about 
the assessment and assessment development process 
are described elsewhere (Shechtman, Haertel, et al, 
2013). In each case, the same test was administered 
as both a pre-test and a post-test before and after the 
replacement unit or usual curriculum.

The analysis used hierarchical linear modeling to 
account for the nesting of students within teachers 
within schools. Analyses revealed statistically 
significant main effects of pretest to posttest gain, 
with student-level effect sizes of .63, .50, and 
.56 (Roschelle et al, 2010), with greater student 
learning gains for students in classrooms that used 
the SimCalc intervention, compared to classrooms 
that covered the same topic using existing materials. 
Further, when additional researchers followed up 
with teachers in participating schools a year after 
the formal research was complete, more than 50% 
were continuing to use the intervention without 
any further incentives (Fishman, Penuel, Hegedus 
& Roschelle, 2011). Teachers who perceived 
coherence (or alignment) of the materials with their 
broader context and who perceived the materials 
to be uniquely valuable were more likely to report 
continued use of the materials (Fishman, Penuel, 
Hegedus & Roschelle, 2011; Hegedus et al, 2009).
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We now proceed to triangulate among three approaches 
to generalizability.

1. �Looking for Interactions of the 
Treatment Effects

One technique for investigating generalizability is 
to examine if there are interactions of the treatment 
effects between experimental group and policy-relevant 
contextual variables (Cronbach & Snow, 1977). The 
logic of this type of approach is that if the sample has 
substantial variability in contextual variables and the 
treatment effect does not vary significantly across these 
variables, then variability of the treatment effect across 
these variables in broader populations is also unlikely 
to be significant. 

In the 7th grade and 8th grade experiments in Texas, 
we examined the school-level contextual variables of the 
percentage of students qualifying for free and reduced 
price lunch programs (FRL), a common indicator 
of socioeconomic status, and the highly-correlated 
percentage of Hispanic students in the school. Figure 2 
shows the relationships between socioeconomic status 
of the sample and student achievement in both studies. 
First, note that the schools in the Texas sample varied 
substantially in the percentage of students qualifying for 
FRL. The relevance of this variable to generalizability of 
the treatment effects is underscored by its correlation 
with the studies’ pretests: mathematics pretest scores 
were inversely correlated with socioeconomic status 
of students in the school. However, this variation 
was weakly correlated to pretest to posttest gains: use 
of dynamic representations increased learning over 

Figure 2: In the treatment classrooms in both 7th and 8th grade, pretest scores correlated with 
socioeconomic status, but learning gain scores did not correlate with prior status.

7th Grade 8th Grade
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traditional materials regardless  of  socioeconomic status. 
Findings were similar with the factor of  percentage of 
Hispanic students, potentially important because of the 
question of whether these English-only materials would 
help students in regions where English may not be 
students’ only or preferred language.

To further explore this, a post hoc analysis was 
conducted by configuring a series of regression models 
to test whether any of the following variables mediated 
the treatment effect within the treatment group: 
teacher background, attitudes, and mathematical 
knowledge; student and school demographics; and 
qualities of implementation. This analysis found 
very few and very weak interactions. Among the few 
noticeable and interpretable interactions, teachers’ 
expectations correlated with student learning gains. 
Students who were rated “low achieving” by their 
teacher before the study tended to learn less in the 
study. Overall, the analysis of these models suggested 
that effects of the intervention integrating dynamic 
representations are not likely to vary dramatically 
across settings. Indeed, 91% of 7th grade classrooms 
in the treatment group had mean classroom gains 
exceeding the mean gain in the control group, 
suggesting that most classrooms in Texas could see a 
benefit from using dynamic representations to address 
students’ conceptual understanding of mathematics.

While these variables were not statically significant, a set 
of published case studies provide further information 
about specific implementation factors that may have 
contributed to variability. The case studies were selected 
from the study population in the Texas experiments and 
were chosen purposefully to examine variation (not at 
random or representatively). One set of case studies of 
7th grade teachers documented variation in pedagogical 
approaches (e.g., emphasis on full classroom or small 
group work) across classrooms that implemented the 
intervention and found that more than one pedagogical 
style was compatible with high classroom learning 
gains (Empson et al, 2013). Another set of case studies 
of 8th grade teachers investigated a train the trainer 

model and found that implementation varied greatly 
among teachers with the same trainer (Dunn, 2009). 
These case studies considered some classrooms with 
much lower than average learning gains while using 
the intervention and documented some factors that 
might explain poor learning results from the unit of 
instruction. The identified factors were basic: teachers 
who skipped lessons, did not allow students to use 
technology, or did not talk about the key mathematical 
ideas in the unit of study had much poorer outcomes 
(Dunn, 2009). Nonetheless, most teachers had better 
classroom learning gains in the treatment condition 
than did comparable teachers who taught the same 
mathematical topic without access to the intervention. 
A third set of case studies examined classroom discourse 
and found stronger learning gains in classrooms where 
teachers pressed for understanding and engaged 
students in extended discourse about mathematical 
concepts (Pierson, 2008). These case studies suggest 
the approach is applicable with teachers who vary in 
pedagogical style, that effects vary with some features 
of classroom implementation, and that teachers must 
adhere to some basic implementation requirements 
in order to obtain learning gains. Subsequently, the 
development team incorporated these insights into 
refined teacher professional development materials and 
workshops. 

These secondary analyses, along with the review 
of published case studies, can provide guidance 
and support to those who might seek to use the 
intervention in other settings. For example, there is 
no suggestion that results should be expected to apply 
only to particular populations or teachers. The analyses 
also help to identify key conditions and practices for 
successful implementation. However, these analyses 
only report additional information about the study 
population and does not consider ways in which 
the study population may not have been a good 
approximation to a probability sample of schools in 
Texas or elsewhere. We consider this challenge in the 
next section. 
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2. �Using Propensity Scores to 
Estimate a Population Average 
Treatment Effect

To further examine generalizability, we used propensity 
score methods (e.g. Rosenbaum and Rubin, 1983, 
1984) to first compare the experimental sample to a 
broader population of schools in Texas (Tipton, 2014) 
and second, to statistically adjust for any differences 
that arose using post-stratification (Tipton, 2013; 
O’Muircheartaigh & Hedges, 2014). In the statistically 
ideal study, the original research team would have 
selected the schools using probability sampling and 
doing so would have resulted in a sample of schools 
that mimicked the distribution of variation throughout 
Texas schools. However, as in most experimental 
research, pragmatic constraints of recruiting and 
working with schools did not enable precise probability 
sampling. Propensity score and post-stratification 
methods allow evaluation of how different the achieved 
sample was from the population and to statistically 
adjust for these differences. The goal is to both assess 

generalizability and to provide an improved estimated 
of the average treatment effect for the intervention for 
a well-defined population.

First, we defined the inference population using Texas’s 
state longitudinal data system (i.e., the Academic 
Excellence Indicator System [AEIS]) for the school 
year of the study (2006-7). The resulting population 
included 1,713 non-charter schools, each which 
contained at least one 7th grade classroom. Each school 
in the experiment and pilot study (n = 92) was then 
located in this population data set. We then selected 
26 school-level variables to compare the sample and 
population. Based on guidance provided by Tipton 
(2013), we chose covariates that could potentially 
moderate the effect of SimCalc on school average 
student mathematics knowledge. These variables are 
listed in Table 1 below.

Table 1: Variables used in the propensity score model

Category Variables

Test Scores

(1) % 7th grade passing math TAKS (Spring 2007); (2) % 7th grade passing 
reading TAKS (Spring 2007); (3) % 3-11 grade commended achievement overall; 
(4) % 3-11 grades commended achievement math; (5) % 3-11 passing all TAKS; (6) 
% 3-11 passing math TAKS

Student 
demographics

(1) % students Black; (2) % of students Hispanic; (3) % students mobile; (4) % 
students on disciplinary action; (5) % students economically disadvantaged; (6) % 
of students LEP; (7) % of students at-risk; (8) 7th grade retention rate

School structure
(1) number of 7th grade students in school; (2) % of school in 7th grade; (3) total 
number of teachers in school; (4) student-teacher ratio in school; (5) average 
teacher tenure at school

Teacher 
demographics

(1) % teachers with 0 years experience; (2) % of teachers with 1-5 years; (3) % of 
teachers with 20 or more years; (4) average teacher years experience; (5) % of 
teachers Black; (6) % of teachers Hispanic

Geography (1) school in rural county
Note: TAKS is the Texas Assessment of Knowledge and Skills.
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The virtue of the propensity score approach is that it 
reduces a difficult multivariate matching problem to a 
univariate matching problem, making statistical analysis 
more tractable. The method compares the sample 
and population via a logistic regression model with 
the selected covariates. For the purpose of these 
comparisons, we used an extended sample that also 
included schools that participated in a pilot study 
(Tatar et al, 2008) that was conducted before the 
main experiments and had results similar to the 
experiments. The advantage of pooling the pilot 
with the experimental sample was to obtain broader 
coverage of the population throughout Texas.

A first step in using propensity score methods is to first 
assess how similar the sample and target population 
are in terms of the selected covariates. To do so, the 
distributions of propensity score logits are compared 
using a generalizability index (Tipton, 2014). This 
index ranges from 0 to 1, with a 1 indicating that 

the sample is an exact miniature of the population 
on the selected covariates. Tipton, Hallberg, Hedges, 
and Chan (2017) develop an approach for hypothesis 
testing based upon a transformed value of  β; 
according to this test, in 95% of random samples, with  
p = 26 covariates and n = 92 schools, we would 
expect the index to be greater than 0.98. However, 
Tipton (2014) shows that values of β greater than  
0.80 indicate that while the sample differs from that 
of a random sample, these differences between the 
sample and population can be easily adjusted for 
using post-stratification. 

Using the data in this study plus the pilot, we 
estimate the generalizability index to be β = 0.91. 
This value indicates that while the overall sample is 
not as representative of the target population on these  
26 covariates as a similarly sized random sample would 
be, that the differences that remain are small and can be 
easily adjusted for using post-stratification. This degree 

Figure 3: Distribution of propensity score logits in experiment and population
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of similarity can be seen visually in Figure 3, wherein 
the distributions of the logits of the probabilities of 
selection into the study are compared for schools in 
the study to those in the target population. Note that 
the distribution for units in the population has both a 
larger mean and a right skew; the units in the left tail 
have very small probabilities of being selected into the 
experiment. Importantly, this degree of generalizability 
is better than if we exclude the pilot (β = 0.85) or if we 
only use the pilot data (β = 0.80).

Since the sample was not completely representative of 
the population – and given the high generalizability 
index value – the next step was to develop an estimate 
of the population average treatment effect using 
post-stratification. The idea of a post-stratification 
estimator is to reweight the experimental data so 
that the distribution of covariates in the sample is 
similar to that in the population. In doing so, the 
treatment effect estimate and the uncertainty of this 
estimate are adjusted, both of which are important 
for school leaders and policy makers. The benefit 
of this approach in the sample selection context, as 
compared to other propensity score approaches, is 
that it requires less exact matches while reducing non-
random sample selection bias as much as 50-70% 
with four strata (Tipton, 2013). For this analysis, we 
chose an estimator with four strata, defined such that 
each contains 25% of the population. Table 2 shows 

that the estimate of the population average treatment 
effect is about 2% larger while the standard error is 
about 4% larger.

Because school leaders often ask “did your study 
consider schools like mine?” we performed a further 
analysis to determine the range of schools in Texas that 
have a reasonable match to schools in the available 
data. There were no charter schools in data set, so 
we cannot evaluate whether these results generalize 
to charter schools. By examining the distributions of 
propensity score logits in Figure 3, we can see that 
92% of Texas non-charter middle schools with a 7th 
grade mathematics class have a good match in the 
study. (The remaining 8% of schools in the population 
– those in the long tail of the distribution – do not 
have any similar schools in the study.) The map in 
Figure 4a shows the districts containing schools in the 
experiment or in the pilot study; Figure 4b shows the 
districts that contain schools for which there is a good 
match in the experiment or pilot.

Figure 4b reveals that most schools in Texas can be 
matched to schools within the data set. However, not all 
regions of Texas participated in the original studies and 
data was therefore not available for some configurations 
of school characteristics, such as schools with a high 
proportion of African American students. 

Table 2: Estimates of the population average treatment effect by stratum

Stratum Estimate SE Weights 95% CI
we wp lower upper

1 1.42 0.20 0.61 0.25 1.03 1.82
2 1.46 0.29 0.24 0.25 0.90 2.03
3 1.17 0.38 0.08 0.25 0.42 1.91
4 1.81 0.30 0.07 0.25 1.23 2.40
Post-stratification 1.47 0.15 1.00 1.00 1.17 1.76
Conventional 1.44 0.14 1.00 1.00 1.17 1.72

Note: The estimates of the treatment effect given here are effect sizes standardized by the standard 
deviation of school means in the experiment.
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Overall, the advantages of these propensity score-
based methods are that they allow an assessment of 
the degree of mismatch between the available sample 
data and a well-defined inference population and 
that they enable quantifying both the degree of bias 
and uncertainty of generalization. What is particularly 
useful is that this method requires clear definition of an 
inference population, thus highlighting that the results 
of an experiment may generalize well to one population 
but not to another (such as to charter schools or to 
those with a high proportion of African American 
students). A limitation of these methods, however, is 

that they are limited to the matching variables available 
for the entire population and these may not include the 
all of the factors that produce variation in treatment 
effects. For example, the database we used does 
include information about each school’s technology 
infrastructure and a school’s technology infrastructure 
is an important aspect of its capacity to implement 
the intervention. As states build more extensive data 
systems for their schools – an important current policy 
trend – researchers abilities to use propensity matching 
to analyze generalizability will improve.

Figure 4a: Experimental and Pilot Samples: Colored regions show Texas school districts containing schools 
in which the experiment and pilot took place.
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3. �Extensions with Adaptation to 
Different Settings

 In this section, we consider additional data to shed light 
on whether the results might generalize to populations 
and settings outside of Texas. We think of this additional 
research as an “extension” to the prior experiments, as 
the intervention was not precisely replicated. Rather it 
was adapted to suit the new contexts. Each adaptation, 
however, retained a focus on the same mathematical 
concepts, the same design in the technology, and on the 
integration of technological, workbook, and teacher 
professional development components. 

Research found that one level of adaptation occurs 
as teachers take up the intervention (as previously 
discussed for Texas case studies above). Indeed, 
adaptation by teachers to suit their own context is 
considered important to teacher ownership (Coburn, 
2003). The nature of teachers’ adaptations has been 
thoroughly documented (Hoyles, Noss, Roschelle & 
Vahey, 2013; Empson et al, 2013) and includes: new 
introductory activities to transition students into the 
replacement unit (given their prior learning); varied 
allocation of activities across full classroom, small group 
and individual modalities; pace of implementation 
and further elaboration of classroom lesson plans; 

Figure 4b. Generalization Regions Where Results Apply: Colored regions show Texas school districts with 
schools that match the propensity scores of the participating schools.



16 © 2018 SRI International — Generalizability of a Technology-Based Intervention 

additional teacher-designed discussions, summaries 
or “consolidations” of the mathematical content.

Adaptations to the intervention as a whole were 
made by the research partnerships formed to conduct 
additional implementation research in new settings. 
One partnership was focused on Florida and another 
on schools in England. In Florida, the Texas 7th grade 
unit was the basis of the intervention (Vahey, Roy, 
& Fueyo, 2013). In England, the Texas 8th grade 
unit was the basis. The workbooks and technology 
for Florida and England were based on Texas 
precedents, and were modified, in consultation with 
local mathematics education experts, to fit the local 
contexts while maintaining the same learning goals. 
In addition, in England, the professional development 
was substantially adjusted to reflect differences in 
the strengths of local teachers as well as the national 
curricular context (Clark-Wilson et al, 2015). The 
assessments used to measure learning before and after 
the intervention were very close to those used in Texas, 
but were lightly adjusted to accommodate linguistic 
differences (again in consultation with local experts). 

The Florida and UK extensions were conducted 
without local, contemporaneous control groups. 
From a methodological perspective, this is obviously 
a weakness. However, the sponsors of this research (a 
philanthropy in Florida and a different philanthropy 
in the UK) wanted their funds to go towards use of the 
materials by large numbers of teachers and students, 
and did not want to spend money on control groups. 
The sponsors of the research believed that given 
a calibrated pretest and posttest, the results could 
be credibly interpreted by their constituent school 
decision makers without a control group. 

The Florida Study
In Florida, recruitment was led by the mathematics 
supervisor in one of the largest districts in Florida. 
Ten schools were invited to participate in the study. 
Seven of these schools accepted the invitation, and 
these schools represent the wide variety of schools 
in the district. Two of the schools were high-poverty 
(greater than 50% of the students were on the free or 
reduced lunch program) and the student body of these 
schools was composed of greater than 50% “minority” 
students. Two teachers per school were chosen to 
participate. Due to teacher transfers between the time 
of recruitment and the beginning of the school year, 
there were a total of 13 teachers in the study.

This district has a population with more African 
American students (19%) and substantially fewer 
Hispanic students (9%) than in the Texas study 
(4% and 44% in the Treatment group, respectively). 
The student population in the Florida study closely 
matched the student population in the district at 
large generally (see Tables 3 and 4). To quantify the 
variation in prior achievement in the population, we 
used the Florida Comprehensive Achievement Test 
(FCAT). Levels on FCAT range from Level 1 (lowest) 
to Level 5 (highest). Level 3 indicates that a student’s 
performance is on grade level.

To analyze results in Florida, we conducted a quasi-
experimental comparison of the Florida treatment group 
(there was no Florida control group) to the Texas control 
group. As Figure 5 shows, learning gains from pretest to 
posttest were strong in the Florida classrooms using the 
treatment (ES=1.09). We further analyzed the data by 
developing a hierarchical linear model. This model (see 
Table 5) found the posttest scores in Florida classrooms 
were significantly higher than one would predict on 
the basis of control group learning gains found in prior 
research in Texas. One caution in interpreting this data 
is that the Florida classrooms had a higher pretest score 
than seen in Texas and therefore it could be that Florida 
students were better prepared to learn this material 
from any resource, not just the treatment. Regardless of 



17  Technical Report 10  |  September 2018

Figure 5. Comparison of Texas and Florida Distributions in pretest and posttest
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Table 3. Student ethnicity in the Florida district and the replication study

Ethnicity
In the Florida

 district, overall
In the Florida district, 

in the sample
Caucasian/White 63% 48%
African American/Black 19% 18%
Hispanic/Latino 9% 10%
Asian/Pacific Islander 4% 5%
Native American <1% 1%
Multiracial 5% 7%
Missing data -- 10%

Table 4. Student 7th grade FCAT scores in the Florida and the replication study. 

6th grade mathematics  
FCAT level

In the Florida  
district

In the Florida district, 
 in the sample

Level 1 24% 19%
Level 2 21% 26%
Level 3 28% 31%
Level 4 19% 20%
Level 5 8% 5%
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whether this resource is uniquely suited to producing 
high posttest scores among Florida students, the results 
do indicate that the resource was associated with strong 
pretest to posttest learning gains in Florida, not just 
Texas. Likewise, the results increase confidence that 
the effects seen in Texas were not dependent on factors 
unique to Texas schools, teachers, or students.

As the Florida population had more African-American 
students, we disaggregated the data and considered this 
population specifically. Consistent with achievement 
data nationwide, the Florida data shows that the mean 
African American student pretest score is significantly 
lower than the mean white student pretest score 
(while the mean for Hispanic students was also lower 

than Caucasian this was not found to be statistically 
significant; this may be significant in a larger sample, 
but our sample of Florida students had relatively few 
Hispanic students). However, there was no significant 
difference in mean student gain score across ethnicities 
(see Figure 6). This finding is again consistent with 
prior SimCalc studies, which found that the materials 
are effective across diverse groups of students.

On the basis of this pilot in Florida, the team has since 
conducted a set of large-scale studies in three other 
Florida districts, using the Florida state assessment 
as an outcome measure. Findings will be reported in 
Sirinides et al (in preparation) and Vahey et al. (in 
preparation).

Table 5. HLM model comparing 7th Grade Florida or 8th Grade UK treatment to Texas Control.

Fixed Effects

Predictor Coeff. SE Z Ratio P

7th Grade model

Florida (T) Texas (C) Contrast Intercept 15.59 0.33 47.40 0.000

Centered Pretest 0.80 0.02 30.14 0.000

FL/TX Contrast 6.96 0.70 9.91 0.000

8th Grade Model

UK (T) Texas (C) Contrast Intercept 14.28 0.67 21.23 0.000

Centered Pretest 0.80 0.03 24.23 0.000

UK/TX Contrast 4.62 1.00 4.64 0.000

Random Effects
(95% Conf. Interval)

Variance SE
Upper 
Bound

 Lower 
Bound

7th Grade model

Florida (T) Texas (C) Contrast Level 1 (student) 13.69 0.61 12.55 14.94

Level 2 (teacher) 4.14 0.91 2.69 6.38

8th Grade Model

UK (T) Texas (C) Contrast Level 1 (student) 21.71 1.17 19.54 24.12

Level 2 (teacher) 8.31 2.16 4.99 13.84
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Figure 6: Student learning was similar across ethnicities. The error bars, which overlap across all groups, 
show that the slight difference in gains are not statistically significant.
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The UK Study
A local UK research team recruited a wide variety of 
school types within two hours of London, including 
state schools, Academy schools, and an independent 
school. Schools represented the wide variety of schools 
in England, with a range of school-wide achievement as 
well as students receiving free school meals (FSM). Ten 
schools participated, with a goal of two teachers per 
school. One school had only 1 grade-level mathematics 
teacher, resulting in a total of 19 teachers participating 
in the professional development and classroom 
implementation.

Before adapting the materials, team of UK-based 
researchers as well as two local teacher professional 
development consultants reviewed the materials in 
the context of alignment with the English National 
Curriculum, and decided that the 8th grade Linear 
Functions unit was the most appropriate for use in 
their context. These local experts then worked with 

the original designers to make minor revisions to the 
materials so that they were adapted to the local context, 
while ensuring that the mathematics content was 
not impacted by these superficial changes. Again the 
procedure for using the materials was similar to the 
procedure adopted in Texas: teachers attended teacher 
professional development, and then had access to 
aligned workbooks and software.

As with the Florida data, we conducted a quasi-
experimental comparison of the UK treatment schools 
to Texas control schools. Figure 7 shows pretest and 
posttest for three populations of students: UK SimCalc 
students, Texas Control students (who did not use 
SimCalc), and Texas SimCalc students. At pretest, all 
groups had similar mean scores. At posttest, the UK 
students had gained. We compared the groups via 
a hierarchical linear model and found that the UK 
students scored significantly higher than would be 
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predicted without the intervention on the basis of 
results in the Texas control group (ES=0.57) (see Table 
5). Since there was no UK control group, it remains 
a possibility that UK students would obtained higher 
posttest scores with another intervention, with no 
intervention at all, or that the high posttest gains 
were due to a contemporaneous factor other than the 
intervention. However, interviews with mathematics 
education experts and teachers suggest that students 
in the UK also find learning this material challenging 
and that strong learning gains on this mathematical 
content was unusual and noteworthy. Observations in 
UK classrooms and interviews with teachers suggest 
the use of the intervention by students and their 
teachers was plausibly related to the higher posttest 
scores achieved.  

Data on poverty levels of students in the UK sample 
was available. Consistent with prior achievement 
data, the UK data shows that students in school with 
high poverty (as measured by the percent of students 
receiving free school meals (FSM)) and students in 

schools with low prior math achievement score lower 
on the pretest than their counterparts with low poverty 
and high prior achievement, respectively. However, 
there was no significant difference in mean student 
gain score across these demographics. This finding is 
again consistent with prior SimCalc studies, including 
the Florida research, which found that the materials 
are effective across diverse groups of students.

These materials have since been expanded upon and 
their use continues in England. The research team in 
the UK have continued to study how these materials, 
combined with innovative professional development, 
can impact the teaching of important mathematics 
(e.g. Clark-Wilson et al., 2015; Clark-Wilson, 2016).

Overall, the data show a very similar pattern of 
pretest to posttest learning gains in Florida and 
the UK as in Texas, suggesting that positive effects 
of the integration of dynamic representations with 
curriculum workbooks and teacher professional 
development could be obtained in student populations 
outside Texas. Further, the Florida data addresses 

Figure 7. Comparison of Texas and UK Distributions across pretest and postest
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a concern with the Texas data because the Florida 
sample included a substantial number of African-
American students and those students obtained 
strong learning gains while using the intervention. An 
important limitation of the Florida and UK studies 
is that there were no control groups in those studies, 
and thus, generalization about causality based on these 
data must be cautious. As a practical matter, however, 
the similar pattern of results beyond Texas enhances 
confidence in the intervention; indeed, based in part 
of on these findings, substantial further expansion of 
the program in both the UK and Florida is underway. 

A further benefit of reporting these studies, even 
though their design is weaker than the original study, 
is that the studies show the materials can be adapted 
while maintaining expected pretest to posttest gains. 
Realistically, many more schools are likely to adopt 
materials if they can adapt them to better fit their 
context of use. 

Beyond these studies, additional research with 
the SimCalc software has been conducted in high 
school settings (Hegedus, Tapper & Dalton, 2014). 
This further research addresses related but different 
mathematics, specifically, topics in Algebra 2. As with 
the Texas, Florida and UK research, the intervention 
involved an integration of software, workbooks, and 
teacher professional development. The results from 
the cluster randomized trial were positive.

Conclusion
The substantive finding across three methods for 
examining generalizability is that the efficacy of 
the SimCalc approach for increasing the depth of 
student’ conceptual understanding in middle school 
mathematics, as found in the Texas experiments, 
is likely to generalize to broader populations and 
settings. Research demonstrated that the approach 
can apply to the rest of Texas, to other states in 
the United States, and even internationally. This 
finding is important because educators want to 
know not only that a statistically significant effect 
was detected, but also the applicability of the results 
to varied school settings and populations. 

The findings are specific to interventions that use 
the dynamic representations found in SimCalc in 
integration with curricular workbooks and teacher 
professional development, to form a curricular activity 
system. We expect that the technology alone, or that 
weakly aligned technology, workbook, and professional 
development components would not be sufficient to 
lead to the same treatment effects.

Dynamic representation tools are available for 
topics of algebra, geometry and data analysis 
(among others) and both in the form of computer 
software and cost-effective handheld devices. It 
would be possible to use these additional tools to 
address conceptual understanding for a broader 
range of mathematical topics than considered here. 
Of course, we do not yet know what the effects of 
such interventions would be.

From a methods perspective, we note that 
conducting randomly controlled trials of an 
educational intervention is an important method of 
addressing policy questions, such as causal questions 
regarding how technology in mathematics education 
to increase student learning. The methods for 
establishing internal validity of experiments have 
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been well-articulated and reduced to practice, but 
methods for establishing external validity of findings 
have not coalesced into a recommended approach. 

1. �Treatment effect interaction within the 
experimental sample. This method enabled us to 
ask “Is the effect different across the varied settings 
and participants within the existing data set?” 
and, consequently, how sensitive the intervention 
might be to variation in the characteristics of the 
population or setting.

2. �Statistical inferences about treatment effects in 
the larger population. This method enabled us 
to ask “To what extent do schools in the study 
sample match schools in the general population, 
and how might this impact the treatment effect?”

3. �Treatment effects in extensions and adaptations 
in difference settings. This method enabled us 
to ask “Are similar gains from pre-test to post-
test obtainable with participants in very different 
samples drawn from different populations?” 
Note, however, that these were not replications, 
and adaptation to different settings and context 
were part of the intervention. 

A limitation in all the above work is that it used 
researcher-designed tests to measure outcomes. 
Initially, researcher-designed tests were deployed 
because the standardized measures available in Texas at 
the time were not likely to be sensitive to the learning 
objective of conceptual understanding. As the work 
continued in Florida and the UK, a further positive of 
using the researcher-designed tests became apparent – 
it allowed continued comparison back to the original 
study population.

Overall, we conclude that integrating dynamic 
representations with curricular materials and teacher 
professional development is a potentially generalizable 
method for improving students’ conceptual 
understanding and that triangulation among several 
approaches to examining generalizability can be a 
reasonable substitute for the impractical technique of 
probability sampling. We would further urge the field 
to balance its attention to internal validity and external 
validity, as both are important to policy audiences.	
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